A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings

Cortical function emerges from the interactions of multi-scale networks that may be studied at a high level using neural mass models (NMM) that represent the mean activity of large numbers of neurons. Here, we provide first a new framework called laminar NMM, or LaNMM for short, where we combine con...

Full description

Bibliographic Details
Main Authors: Roser Sanchez-Todo, André M. Bastos, Edmundo Lopez-Sola, Borja Mercadal, Emiliano Santarnecchi, Earl K. Miller, Gustavo Deco, Giulio Ruffini
Format: Article
Language:English
Published: Elsevier 2023-04-01
Series:NeuroImage
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S105381192300085X
_version_ 1797869832939503616
author Roser Sanchez-Todo
André M. Bastos
Edmundo Lopez-Sola
Borja Mercadal
Emiliano Santarnecchi
Earl K. Miller
Gustavo Deco
Giulio Ruffini
author_facet Roser Sanchez-Todo
André M. Bastos
Edmundo Lopez-Sola
Borja Mercadal
Emiliano Santarnecchi
Earl K. Miller
Gustavo Deco
Giulio Ruffini
author_sort Roser Sanchez-Todo
collection DOAJ
description Cortical function emerges from the interactions of multi-scale networks that may be studied at a high level using neural mass models (NMM) that represent the mean activity of large numbers of neurons. Here, we provide first a new framework called laminar NMM, or LaNMM for short, where we combine conduction physics with NMMs to simulate electrophysiological measurements. Then, we employ this framework to infer the location of oscillatory generators from laminar-resolved data collected from the prefrontal cortex in the macaque monkey. We define a minimal model capable of generating coupled slow and fast oscillations, and we optimize LaNMM-specific parameters to fit multi-contact recordings. We rank the candidate models using an optimization function that evaluates the match between the functional connectivity (FC) of the model and data, where FC is defined by the covariance between bipolar voltage measurements at different cortical depths. The family of best solutions reproduces the FC of the observed electrophysiology by selecting locations of pyramidal cells and their synapses that result in the generation of fast activity at superficial layers and slow activity across most depths, in line with recent literature proposals. In closing, we discuss how this hybrid modeling framework can be more generally used to infer cortical circuitry.
first_indexed 2024-04-10T00:17:49Z
format Article
id doaj.art-4fcf149e02154309982605f16247192f
institution Directory Open Access Journal
issn 1095-9572
language English
last_indexed 2024-04-10T00:17:49Z
publishDate 2023-04-01
publisher Elsevier
record_format Article
series NeuroImage
spelling doaj.art-4fcf149e02154309982605f16247192f2023-03-16T05:03:01ZengElsevierNeuroImage1095-95722023-04-01270119938A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordingsRoser Sanchez-Todo0André M. Bastos1Edmundo Lopez-Sola2Borja Mercadal3Emiliano Santarnecchi4Earl K. Miller5Gustavo Deco6Giulio Ruffini7Department of Brain Modeling, Neuroelectrics SL, Av. Tibidabo 47b, 08035 Barcelona, Spain; Center of Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, SpainDepartment of Psychology and Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United StatesDepartment of Brain Modeling, Neuroelectrics SL, Av. Tibidabo 47b, 08035 Barcelona, SpainDepartment of Brain Modeling, Neuroelectrics SL, Av. Tibidabo 47b, 08035 Barcelona, SpainPrecision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USAThe Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USACenter of Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Instituci’o Catalana de la Recerca i Estudis Avan,ats (ICREA), Passeig Llu’s Companys 23, Barcelona, 08010, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC 3800, AustraliaCorresponding author.; Department of Brain Modeling, Neuroelectrics SL, Av. Tibidabo 47b, 08035 Barcelona, Spain; Starlab Barcelona, Av. Tibidabo 47b, 08035 Barcelona, Spain; Haskins Laboratories, 300 George Street, New Haven, CT, 06511, USACortical function emerges from the interactions of multi-scale networks that may be studied at a high level using neural mass models (NMM) that represent the mean activity of large numbers of neurons. Here, we provide first a new framework called laminar NMM, or LaNMM for short, where we combine conduction physics with NMMs to simulate electrophysiological measurements. Then, we employ this framework to infer the location of oscillatory generators from laminar-resolved data collected from the prefrontal cortex in the macaque monkey. We define a minimal model capable of generating coupled slow and fast oscillations, and we optimize LaNMM-specific parameters to fit multi-contact recordings. We rank the candidate models using an optimization function that evaluates the match between the functional connectivity (FC) of the model and data, where FC is defined by the covariance between bipolar voltage measurements at different cortical depths. The family of best solutions reproduces the FC of the observed electrophysiology by selecting locations of pyramidal cells and their synapses that result in the generation of fast activity at superficial layers and slow activity across most depths, in line with recent literature proposals. In closing, we discuss how this hybrid modeling framework can be more generally used to infer cortical circuitry.http://www.sciencedirect.com/science/article/pii/S105381192300085XLaminar NMMLocal field potentialsLFPBipolar LFPCSDRelative power
spellingShingle Roser Sanchez-Todo
André M. Bastos
Edmundo Lopez-Sola
Borja Mercadal
Emiliano Santarnecchi
Earl K. Miller
Gustavo Deco
Giulio Ruffini
A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings
NeuroImage
Laminar NMM
Local field potentials
LFP
Bipolar LFP
CSD
Relative power
title A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings
title_full A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings
title_fullStr A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings
title_full_unstemmed A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings
title_short A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings
title_sort physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings
topic Laminar NMM
Local field potentials
LFP
Bipolar LFP
CSD
Relative power
url http://www.sciencedirect.com/science/article/pii/S105381192300085X
work_keys_str_mv AT rosersancheztodo aphysicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings
AT andrembastos aphysicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings
AT edmundolopezsola aphysicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings
AT borjamercadal aphysicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings
AT emilianosantarnecchi aphysicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings
AT earlkmiller aphysicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings
AT gustavodeco aphysicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings
AT giulioruffini aphysicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings
AT rosersancheztodo physicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings
AT andrembastos physicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings
AT edmundolopezsola physicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings
AT borjamercadal physicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings
AT emilianosantarnecchi physicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings
AT earlkmiller physicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings
AT gustavodeco physicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings
AT giulioruffini physicalneuralmassmodelframeworkfortheanalysisofoscillatorygeneratorsfromlaminarelectrophysiologicalrecordings