Expandable-RCNN: toward high-efficiency incremental few-shot object detection
This study aims at addressing the challenging incremental few-shot object detection (iFSOD) problem toward online adaptive detection. iFSOD targets to learn novel categories in a sequential manner, and eventually, the detection is performed on all learned categories. Moreover, only a few training sa...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2024-04-01
|
Series: | Frontiers in Artificial Intelligence |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/frai.2024.1377337/full |