Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells
This paper presents a new type of solar cellwith enhanced optical-current characteristics using an ultra-thin CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> hole-transporting material (HTM) layer (<400 nm). The HTM layer was between a bi-layer Mo...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-02-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/9/4/719 |
_version_ | 1830380334730969088 |
---|---|
author | Liann-Be Chang Chzu-Chiang Tseng Gwomei Wu Wu-Shiung Feng Ming-Jer Jeng Lung-Chien Chen Kuan-Lin Lee Ewa Popko Lucjan Jacak Katarzyna Gwozdz |
author_facet | Liann-Be Chang Chzu-Chiang Tseng Gwomei Wu Wu-Shiung Feng Ming-Jer Jeng Lung-Chien Chen Kuan-Lin Lee Ewa Popko Lucjan Jacak Katarzyna Gwozdz |
author_sort | Liann-Be Chang |
collection | DOAJ |
description | This paper presents a new type of solar cellwith enhanced optical-current characteristics using an ultra-thin CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> hole-transporting material (HTM) layer (<400 nm). The HTM layer was between a bi-layer Mo metal-electrode and a CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> (MAPbI<sub>3</sub>) perovskite active absorbing material. It promoted carrier transportand led to an improved device with good ohmic-contacts. The solar cell was prepared as a bi-layer Mo/CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub>/perovskite/C<sub>60</sub>/Ag multilayer of nano-structures on an FTO (fluorine-doped tin oxide) glass substrate. The ultra-thin CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> HTM layers were annealed at various temperatures of 400, 500, and 600 °C. Scanning electron microscopy studies revealed that the nano-crystal grain size of CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> increased with the annealing temperature. The solar cell results show an improved optical power conversion efficiency at ~14.2%. The application of the CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> layer with the perovskite absorbing material could be used for designing solar cells with a reduced HTM thickness. The CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> HTM has been evidenced to maintain a properopen circuit voltage, short-circuit current density and photovoltaic stability. |
first_indexed | 2024-12-20T09:27:52Z |
format | Article |
id | doaj.art-4fd30ebf03a94237ba93d8e6b84a5166 |
institution | Directory Open Access Journal |
issn | 2076-3417 |
language | English |
last_indexed | 2024-12-20T09:27:52Z |
publishDate | 2019-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Applied Sciences |
spelling | doaj.art-4fd30ebf03a94237ba93d8e6b84a51662022-12-21T19:45:09ZengMDPI AGApplied Sciences2076-34172019-02-019471910.3390/app9040719app9040719Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar CellsLiann-Be Chang0Chzu-Chiang Tseng1Gwomei Wu2Wu-Shiung Feng3Ming-Jer Jeng4Lung-Chien Chen5Kuan-Lin Lee6Ewa Popko7Lucjan Jacak8Katarzyna Gwozdz9Institute of Electro-Optical Engineering, Green Technology Research Center, Department of Electronic Engineering, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan 333, TaiwanInstitute of Electro-Optical Engineering, Green Technology Research Center, Department of Electronic Engineering, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan 333, TaiwanInstitute of Electro-Optical Engineering, Green Technology Research Center, Department of Electronic Engineering, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan 333, TaiwanInstitute of Electro-Optical Engineering, Green Technology Research Center, Department of Electronic Engineering, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan 333, TaiwanInstitute of Electro-Optical Engineering, Green Technology Research Center, Department of Electronic Engineering, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan 333, TaiwanDepartment of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, TaiwanDepartment of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, TaiwanDepartment of Quantum Technologies, Wroclaw University of Science Technology, Wroclaw 50-370, PolandDepartment of Quantum Technologies, Wroclaw University of Science Technology, Wroclaw 50-370, PolandDepartment of Quantum Technologies, Wroclaw University of Science Technology, Wroclaw 50-370, PolandThis paper presents a new type of solar cellwith enhanced optical-current characteristics using an ultra-thin CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> hole-transporting material (HTM) layer (<400 nm). The HTM layer was between a bi-layer Mo metal-electrode and a CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> (MAPbI<sub>3</sub>) perovskite active absorbing material. It promoted carrier transportand led to an improved device with good ohmic-contacts. The solar cell was prepared as a bi-layer Mo/CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub>/perovskite/C<sub>60</sub>/Ag multilayer of nano-structures on an FTO (fluorine-doped tin oxide) glass substrate. The ultra-thin CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> HTM layers were annealed at various temperatures of 400, 500, and 600 °C. Scanning electron microscopy studies revealed that the nano-crystal grain size of CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> increased with the annealing temperature. The solar cell results show an improved optical power conversion efficiency at ~14.2%. The application of the CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> layer with the perovskite absorbing material could be used for designing solar cells with a reduced HTM thickness. The CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> HTM has been evidenced to maintain a properopen circuit voltage, short-circuit current density and photovoltaic stability.https://www.mdpi.com/2076-3417/9/4/719CIGSehole-transporting material (HTM)perovskiteMoSe<sub>2</sub>C<sub>60</sub> |
spellingShingle | Liann-Be Chang Chzu-Chiang Tseng Gwomei Wu Wu-Shiung Feng Ming-Jer Jeng Lung-Chien Chen Kuan-Lin Lee Ewa Popko Lucjan Jacak Katarzyna Gwozdz Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells Applied Sciences CIGSe hole-transporting material (HTM) perovskite MoSe<sub>2</sub> C<sub>60</sub> |
title | Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells |
title_full | Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells |
title_fullStr | Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells |
title_full_unstemmed | Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells |
title_short | Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells |
title_sort | low cost cuin sub 1 x sub ga sub x sub se sub 2 sub ultra thin hole transporting material layer for perovskite cigse heterojunction solar cells |
topic | CIGSe hole-transporting material (HTM) perovskite MoSe<sub>2</sub> C<sub>60</sub> |
url | https://www.mdpi.com/2076-3417/9/4/719 |
work_keys_str_mv | AT liannbechang lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells AT chzuchiangtseng lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells AT gwomeiwu lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells AT wushiungfeng lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells AT mingjerjeng lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells AT lungchienchen lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells AT kuanlinlee lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells AT ewapopko lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells AT lucjanjacak lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells AT katarzynagwozdz lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells |