Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells

This paper presents a new type of solar cellwith enhanced optical-current characteristics using an ultra-thin CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> hole-transporting material (HTM) layer (&lt;400 nm). The HTM layer was between a bi-layer Mo...

Full description

Bibliographic Details
Main Authors: Liann-Be Chang, Chzu-Chiang Tseng, Gwomei Wu, Wu-Shiung Feng, Ming-Jer Jeng, Lung-Chien Chen, Kuan-Lin Lee, Ewa Popko, Lucjan Jacak, Katarzyna Gwozdz
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/4/719
_version_ 1830380334730969088
author Liann-Be Chang
Chzu-Chiang Tseng
Gwomei Wu
Wu-Shiung Feng
Ming-Jer Jeng
Lung-Chien Chen
Kuan-Lin Lee
Ewa Popko
Lucjan Jacak
Katarzyna Gwozdz
author_facet Liann-Be Chang
Chzu-Chiang Tseng
Gwomei Wu
Wu-Shiung Feng
Ming-Jer Jeng
Lung-Chien Chen
Kuan-Lin Lee
Ewa Popko
Lucjan Jacak
Katarzyna Gwozdz
author_sort Liann-Be Chang
collection DOAJ
description This paper presents a new type of solar cellwith enhanced optical-current characteristics using an ultra-thin CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> hole-transporting material (HTM) layer (&lt;400 nm). The HTM layer was between a bi-layer Mo metal-electrode and a CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> (MAPbI<sub>3</sub>) perovskite active absorbing material. It promoted carrier transportand led to an improved device with good ohmic-contacts. The solar cell was prepared as a bi-layer Mo/CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub>/perovskite/C<sub>60</sub>/Ag multilayer of nano-structures on an FTO (fluorine-doped tin oxide) glass substrate. The ultra-thin CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> HTM layers were annealed at various temperatures of 400, 500, and 600 &#176;C. Scanning electron microscopy studies revealed that the nano-crystal grain size of CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> increased with the annealing temperature. The solar cell results show an improved optical power conversion efficiency at ~14.2%. The application of the CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> layer with the perovskite absorbing material could be used for designing solar cells with a reduced HTM thickness. The CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> HTM has been evidenced to maintain a properopen circuit voltage, short-circuit current density and photovoltaic stability.
first_indexed 2024-12-20T09:27:52Z
format Article
id doaj.art-4fd30ebf03a94237ba93d8e6b84a5166
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-12-20T09:27:52Z
publishDate 2019-02-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-4fd30ebf03a94237ba93d8e6b84a51662022-12-21T19:45:09ZengMDPI AGApplied Sciences2076-34172019-02-019471910.3390/app9040719app9040719Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar CellsLiann-Be Chang0Chzu-Chiang Tseng1Gwomei Wu2Wu-Shiung Feng3Ming-Jer Jeng4Lung-Chien Chen5Kuan-Lin Lee6Ewa Popko7Lucjan Jacak8Katarzyna Gwozdz9Institute of Electro-Optical Engineering, Green Technology Research Center, Department of Electronic Engineering, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan 333, TaiwanInstitute of Electro-Optical Engineering, Green Technology Research Center, Department of Electronic Engineering, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan 333, TaiwanInstitute of Electro-Optical Engineering, Green Technology Research Center, Department of Electronic Engineering, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan 333, TaiwanInstitute of Electro-Optical Engineering, Green Technology Research Center, Department of Electronic Engineering, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan 333, TaiwanInstitute of Electro-Optical Engineering, Green Technology Research Center, Department of Electronic Engineering, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan 333, TaiwanDepartment of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, TaiwanDepartment of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, TaiwanDepartment of Quantum Technologies, Wroclaw University of Science Technology, Wroclaw 50-370, PolandDepartment of Quantum Technologies, Wroclaw University of Science Technology, Wroclaw 50-370, PolandDepartment of Quantum Technologies, Wroclaw University of Science Technology, Wroclaw 50-370, PolandThis paper presents a new type of solar cellwith enhanced optical-current characteristics using an ultra-thin CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> hole-transporting material (HTM) layer (&lt;400 nm). The HTM layer was between a bi-layer Mo metal-electrode and a CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> (MAPbI<sub>3</sub>) perovskite active absorbing material. It promoted carrier transportand led to an improved device with good ohmic-contacts. The solar cell was prepared as a bi-layer Mo/CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub>/perovskite/C<sub>60</sub>/Ag multilayer of nano-structures on an FTO (fluorine-doped tin oxide) glass substrate. The ultra-thin CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> HTM layers were annealed at various temperatures of 400, 500, and 600 &#176;C. Scanning electron microscopy studies revealed that the nano-crystal grain size of CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> increased with the annealing temperature. The solar cell results show an improved optical power conversion efficiency at ~14.2%. The application of the CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> layer with the perovskite absorbing material could be used for designing solar cells with a reduced HTM thickness. The CuIn<sub>1&#8722;x</sub>Ga<sub>x</sub>Se<sub>2</sub> HTM has been evidenced to maintain a properopen circuit voltage, short-circuit current density and photovoltaic stability.https://www.mdpi.com/2076-3417/9/4/719CIGSehole-transporting material (HTM)perovskiteMoSe<sub>2</sub>C<sub>60</sub>
spellingShingle Liann-Be Chang
Chzu-Chiang Tseng
Gwomei Wu
Wu-Shiung Feng
Ming-Jer Jeng
Lung-Chien Chen
Kuan-Lin Lee
Ewa Popko
Lucjan Jacak
Katarzyna Gwozdz
Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells
Applied Sciences
CIGSe
hole-transporting material (HTM)
perovskite
MoSe<sub>2</sub>
C<sub>60</sub>
title Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells
title_full Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells
title_fullStr Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells
title_full_unstemmed Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells
title_short Low-Cost CuIn<sub>1−x</sub>Ga<sub>x</sub>Se<sub>2</sub> Ultra-Thin Hole-Transporting Material Layer for Perovskite/CIGSe Heterojunction Solar Cells
title_sort low cost cuin sub 1 x sub ga sub x sub se sub 2 sub ultra thin hole transporting material layer for perovskite cigse heterojunction solar cells
topic CIGSe
hole-transporting material (HTM)
perovskite
MoSe<sub>2</sub>
C<sub>60</sub>
url https://www.mdpi.com/2076-3417/9/4/719
work_keys_str_mv AT liannbechang lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells
AT chzuchiangtseng lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells
AT gwomeiwu lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells
AT wushiungfeng lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells
AT mingjerjeng lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells
AT lungchienchen lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells
AT kuanlinlee lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells
AT ewapopko lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells
AT lucjanjacak lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells
AT katarzynagwozdz lowcostcuinsub1xsubgasubxsubsesub2subultrathinholetransportingmateriallayerforperovskitecigseheterojunctionsolarcells