Optimal Sailing Speeds and Time Windows in Inland Water Transportation Operations Management: Mathematical Models and Applications

Inland waterway transportation plays a pivotal role in advancing economic development and nurturing sustainable progress. It serves as a vital conduit linking communities, industries, and markets, thereby facilitating the seamless flow of essential commodities and fostering regional integration. How...

Full description

Bibliographic Details
Main Authors: Haoqing Wang, Yuan Liu, Yong Jin, Shuaian Wang
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/23/4747
_version_ 1797399835156938752
author Haoqing Wang
Yuan Liu
Yong Jin
Shuaian Wang
author_facet Haoqing Wang
Yuan Liu
Yong Jin
Shuaian Wang
author_sort Haoqing Wang
collection DOAJ
description Inland waterway transportation plays a pivotal role in advancing economic development and nurturing sustainable progress. It serves as a vital conduit linking communities, industries, and markets, thereby facilitating the seamless flow of essential commodities and fostering regional integration. However, in today’s era, marked by a resolute commitment to environmental responsibility and sustainability, inland shipping confronts formidable challenges, particularly pertaining to emission pollution and the escalating costs of fuel. These challenges represent significant impediments to the pursuit of environmentally conscious and sustainable growth by shipping companies. This research endeavor is geared towards the creation of a mathematical model that takes into account various factors, including the types of waterways, temporal constraints, and punctual arrival at the port of discharge. The primary objective is to empower shipping companies to make informed decisions about optimal sailing speeds and the most opportune time windows for entering one-way waterway segments. This, in turn, leads to reductions in fuel costs and waiting times for shipping companies, all while achieving cost minimization and mitigating emissions issues in inland waterway transportation. Ultimately, this research advances the cause of green and sustainable development in the inland waterway shipping sector. Specifically, this study focuses on routes that involve the dynamic transition between one-way and two-way segments. To accomplish this, an integer programming (IP) model is proposed to meticulously analyze the ideal sailing speed for each segment of the route and determine the optimal windows for accessing single-direction channels, thus representing a multistage decision-making process. Meanwhile, the model’s reliability is substantiated through a rigorous comparative assessment against three benchmark strategies (EAS, LAS, and MAS). In our experiments, the optimization model yielded a total cost for the entire inland waterway amounting to $80,626.20. This figure stands below the total costs of $87,118.14 under the EAS strategy and $83,494.70 under the MAS strategy (the LAS strategy failed to meet the port of discharge deadline), thereby conclusively validating its ability to guide vessels to their port of discharge within prescribed schedules, all while reducing overall operational costs and promoting sustainable and environmentally responsible practices.
first_indexed 2024-03-09T01:46:50Z
format Article
id doaj.art-4fe5fc6a914046339249d8a5984156c1
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T01:46:50Z
publishDate 2023-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-4fe5fc6a914046339249d8a5984156c12023-12-08T15:21:38ZengMDPI AGMathematics2227-73902023-11-011123474710.3390/math11234747Optimal Sailing Speeds and Time Windows in Inland Water Transportation Operations Management: Mathematical Models and ApplicationsHaoqing Wang0Yuan Liu1Yong Jin2Shuaian Wang3Faculty of Business, The Hong Kong Polytechnic University, Hong Kong, ChinaSchool of Economics and Management, Wuhan University, Wuhan 430072, ChinaFaculty of Business, The Hong Kong Polytechnic University, Hong Kong, ChinaFaculty of Business, The Hong Kong Polytechnic University, Hong Kong, ChinaInland waterway transportation plays a pivotal role in advancing economic development and nurturing sustainable progress. It serves as a vital conduit linking communities, industries, and markets, thereby facilitating the seamless flow of essential commodities and fostering regional integration. However, in today’s era, marked by a resolute commitment to environmental responsibility and sustainability, inland shipping confronts formidable challenges, particularly pertaining to emission pollution and the escalating costs of fuel. These challenges represent significant impediments to the pursuit of environmentally conscious and sustainable growth by shipping companies. This research endeavor is geared towards the creation of a mathematical model that takes into account various factors, including the types of waterways, temporal constraints, and punctual arrival at the port of discharge. The primary objective is to empower shipping companies to make informed decisions about optimal sailing speeds and the most opportune time windows for entering one-way waterway segments. This, in turn, leads to reductions in fuel costs and waiting times for shipping companies, all while achieving cost minimization and mitigating emissions issues in inland waterway transportation. Ultimately, this research advances the cause of green and sustainable development in the inland waterway shipping sector. Specifically, this study focuses on routes that involve the dynamic transition between one-way and two-way segments. To accomplish this, an integer programming (IP) model is proposed to meticulously analyze the ideal sailing speed for each segment of the route and determine the optimal windows for accessing single-direction channels, thus representing a multistage decision-making process. Meanwhile, the model’s reliability is substantiated through a rigorous comparative assessment against three benchmark strategies (EAS, LAS, and MAS). In our experiments, the optimization model yielded a total cost for the entire inland waterway amounting to $80,626.20. This figure stands below the total costs of $87,118.14 under the EAS strategy and $83,494.70 under the MAS strategy (the LAS strategy failed to meet the port of discharge deadline), thereby conclusively validating its ability to guide vessels to their port of discharge within prescribed schedules, all while reducing overall operational costs and promoting sustainable and environmentally responsible practices.https://www.mdpi.com/2227-7390/11/23/4747shipping operations managementsustainabilityvessel schedulinginteger programming
spellingShingle Haoqing Wang
Yuan Liu
Yong Jin
Shuaian Wang
Optimal Sailing Speeds and Time Windows in Inland Water Transportation Operations Management: Mathematical Models and Applications
Mathematics
shipping operations management
sustainability
vessel scheduling
integer programming
title Optimal Sailing Speeds and Time Windows in Inland Water Transportation Operations Management: Mathematical Models and Applications
title_full Optimal Sailing Speeds and Time Windows in Inland Water Transportation Operations Management: Mathematical Models and Applications
title_fullStr Optimal Sailing Speeds and Time Windows in Inland Water Transportation Operations Management: Mathematical Models and Applications
title_full_unstemmed Optimal Sailing Speeds and Time Windows in Inland Water Transportation Operations Management: Mathematical Models and Applications
title_short Optimal Sailing Speeds and Time Windows in Inland Water Transportation Operations Management: Mathematical Models and Applications
title_sort optimal sailing speeds and time windows in inland water transportation operations management mathematical models and applications
topic shipping operations management
sustainability
vessel scheduling
integer programming
url https://www.mdpi.com/2227-7390/11/23/4747
work_keys_str_mv AT haoqingwang optimalsailingspeedsandtimewindowsininlandwatertransportationoperationsmanagementmathematicalmodelsandapplications
AT yuanliu optimalsailingspeedsandtimewindowsininlandwatertransportationoperationsmanagementmathematicalmodelsandapplications
AT yongjin optimalsailingspeedsandtimewindowsininlandwatertransportationoperationsmanagementmathematicalmodelsandapplications
AT shuaianwang optimalsailingspeedsandtimewindowsininlandwatertransportationoperationsmanagementmathematicalmodelsandapplications