Summary: | IntroductionEstablishing an accurate way to quantify pain is one of the most formidable tasks in neuroscience and medical practice. Functional near-infrared spectroscopy (fNIRS) can be utilized to detect the brain’s reaction to pain. The study sought to assess the neural mechanisms of the wrist-ankle acupuncture transcutaneous electrical nerve stimulation analgesic bracelet (E-WAA) in providing pain relief and altering cerebral blood volume dynamics, and to ascertain the reliability of cortical activation patterns as a means of objectively measuring pain.MethodsThe participants (mean age 36.6 ± 7.2 years) with the cervical-shoulder syndrome (CSS) underwent pain testing prior to, 1 min following, and 30 min after the left point Jianyu treatment. The E-WAA was used to administer an electrical stimulation therapy that lasted for 5 min. A 24-channel fNIRS system was utilized to monitor brain oxyhemoglobin (HbO) levels, and changes in HbO concentrations, cortical activation areas, and subjective pain assessment scales were documented.ResultsWe discovered that HbO concentrations in the prefrontal cortex significantly increased when CSS patients were exposed to painful stimuli at the cerebral cortex level. The second pain test saw a considerable decrease in the average HbO change amount in the prefrontal cortex when E-WAA was applied, which in turn led to a reduction in the amount of activation and the size of the activated area in the cortex.DiscussionThis study revealed that the frontal polar (FP) and dorsolateral prefrontal cortex (DLPFC) were linked to the analgesic modulation activated by the E-WAA.
|