Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida

Rhamnolipids are biosurfactants produced by microorganisms with the potential to replace synthetic compounds with petrochemical origin. To promote industrial use of rhamnolipids, recombinant rhamnolipid production from sugars needs to be intensified. Since this remains challenging, the aim of the pr...

Full description

Bibliographic Details
Main Authors: Till Tiso, Nina Ihling, Sonja Kubicki, Andreas Biselli, Andreas Schonhoff, Isabel Bator, Stephan Thies, Tobias Karmainski, Sebastian Kruth, Anna-Lena Willenbrink, Anita Loeschcke, Petra Zapp, Andreas Jupke, Karl-Erich Jaeger, Jochen Büchs, Lars M. Blank
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-08-01
Series:Frontiers in Bioengineering and Biotechnology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fbioe.2020.00976/full
_version_ 1818826057625632768
author Till Tiso
Till Tiso
Nina Ihling
Nina Ihling
Sonja Kubicki
Sonja Kubicki
Andreas Biselli
Andreas Biselli
Andreas Schonhoff
Andreas Schonhoff
Isabel Bator
Isabel Bator
Stephan Thies
Stephan Thies
Tobias Karmainski
Tobias Karmainski
Sebastian Kruth
Sebastian Kruth
Anna-Lena Willenbrink
Anna-Lena Willenbrink
Anita Loeschcke
Anita Loeschcke
Petra Zapp
Petra Zapp
Andreas Jupke
Andreas Jupke
Karl-Erich Jaeger
Karl-Erich Jaeger
Karl-Erich Jaeger
Jochen Büchs
Jochen Büchs
Lars M. Blank
Lars M. Blank
author_facet Till Tiso
Till Tiso
Nina Ihling
Nina Ihling
Sonja Kubicki
Sonja Kubicki
Andreas Biselli
Andreas Biselli
Andreas Schonhoff
Andreas Schonhoff
Isabel Bator
Isabel Bator
Stephan Thies
Stephan Thies
Tobias Karmainski
Tobias Karmainski
Sebastian Kruth
Sebastian Kruth
Anna-Lena Willenbrink
Anna-Lena Willenbrink
Anita Loeschcke
Anita Loeschcke
Petra Zapp
Petra Zapp
Andreas Jupke
Andreas Jupke
Karl-Erich Jaeger
Karl-Erich Jaeger
Karl-Erich Jaeger
Jochen Büchs
Jochen Büchs
Lars M. Blank
Lars M. Blank
author_sort Till Tiso
collection DOAJ
description Rhamnolipids are biosurfactants produced by microorganisms with the potential to replace synthetic compounds with petrochemical origin. To promote industrial use of rhamnolipids, recombinant rhamnolipid production from sugars needs to be intensified. Since this remains challenging, the aim of the presented research is to utilize a multidisciplinary approach to take a step toward developing a sustainable rhamnolipid production process. Here, we developed expression cassettes for stable integration of the rhamnolipid biosynthesis genes into the genome outperformed plasmid-based expression systems. Furthermore, the genetic stability of the production strain was improved by using an inducible promoter. To enhance rhamnolipid synthesis, energy- and/or carbon-consuming traits were removed: mutants negative for the synthesis of the flagellar machinery or the storage polymer PHA showed increased production by 50%. Variation of time of induction resulted in an 18% increase in titers. A scale-up from shake flasks was carried out using a 1-L bioreactor. By recycling of the foam, biomass loss could be minimized and a rhamnolipid titer of up to 1.5 g/L was achieved without using mechanical foam destroyers or antifoaming agents. Subsequent liquid–liquid extraction was optimized by using a suitable minimal medium during fermentation to reduce undesired interphase formation. A technical-scale production process was designed and evaluated by a life-cycle assessment (LCA). Different process chains and their specific environmental impact were examined. It was found that next to biomass supply, the fermentation had the biggest environmental impact. The present work underlines the need for multidisciplinary approaches to address the challenges associated with achieving sustainable production of microbial secondary metabolites. The results are discussed in the context of the challenges of microbial biosurfactant production using hydrophilic substrates on an industrial scale.
first_indexed 2024-12-19T00:21:37Z
format Article
id doaj.art-4fecae5c422c41a3a7664b1484539c53
institution Directory Open Access Journal
issn 2296-4185
language English
last_indexed 2024-12-19T00:21:37Z
publishDate 2020-08-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Bioengineering and Biotechnology
spelling doaj.art-4fecae5c422c41a3a7664b1484539c532022-12-21T20:45:31ZengFrontiers Media S.A.Frontiers in Bioengineering and Biotechnology2296-41852020-08-01810.3389/fbioe.2020.00976565499Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putidaTill Tiso0Till Tiso1Nina Ihling2Nina Ihling3Sonja Kubicki4Sonja Kubicki5Andreas Biselli6Andreas Biselli7Andreas Schonhoff8Andreas Schonhoff9Isabel Bator10Isabel Bator11Stephan Thies12Stephan Thies13Tobias Karmainski14Tobias Karmainski15Sebastian Kruth16Sebastian Kruth17Anna-Lena Willenbrink18Anna-Lena Willenbrink19Anita Loeschcke20Anita Loeschcke21Petra Zapp22Petra Zapp23Andreas Jupke24Andreas Jupke25Karl-Erich Jaeger26Karl-Erich Jaeger27Karl-Erich Jaeger28Jochen Büchs29Jochen Büchs30Lars M. Blank31Lars M. Blank32iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyChair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyInstitute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyFluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyInstitute of Energy and Climate Research – Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich GmbH, Jülich, GermanyiAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyInstitute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, GermanyiAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyiAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyFluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyInstitute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyInstitute of Energy and Climate Research – Systems Analysis and Technology Evaluation (IEK-STE), Forschungszentrum Jülich GmbH, Jülich, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyFluid Process Engineering (AVT.FVT), RWTH Aachen University, Aachen, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyInstitute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, GermanyInstitute of Bio- and Geosciences IBG 1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyChair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, GermanyiAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, GermanyBioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, GermanyRhamnolipids are biosurfactants produced by microorganisms with the potential to replace synthetic compounds with petrochemical origin. To promote industrial use of rhamnolipids, recombinant rhamnolipid production from sugars needs to be intensified. Since this remains challenging, the aim of the presented research is to utilize a multidisciplinary approach to take a step toward developing a sustainable rhamnolipid production process. Here, we developed expression cassettes for stable integration of the rhamnolipid biosynthesis genes into the genome outperformed plasmid-based expression systems. Furthermore, the genetic stability of the production strain was improved by using an inducible promoter. To enhance rhamnolipid synthesis, energy- and/or carbon-consuming traits were removed: mutants negative for the synthesis of the flagellar machinery or the storage polymer PHA showed increased production by 50%. Variation of time of induction resulted in an 18% increase in titers. A scale-up from shake flasks was carried out using a 1-L bioreactor. By recycling of the foam, biomass loss could be minimized and a rhamnolipid titer of up to 1.5 g/L was achieved without using mechanical foam destroyers or antifoaming agents. Subsequent liquid–liquid extraction was optimized by using a suitable minimal medium during fermentation to reduce undesired interphase formation. A technical-scale production process was designed and evaluated by a life-cycle assessment (LCA). Different process chains and their specific environmental impact were examined. It was found that next to biomass supply, the fermentation had the biggest environmental impact. The present work underlines the need for multidisciplinary approaches to address the challenges associated with achieving sustainable production of microbial secondary metabolites. The results are discussed in the context of the challenges of microbial biosurfactant production using hydrophilic substrates on an industrial scale.https://www.frontiersin.org/article/10.3389/fbioe.2020.00976/fullrhamnolipidsPseudomonas putida KT2440synthetic biologymetabolic engineeringoxygen transfer rateliquid–liquid extraction
spellingShingle Till Tiso
Till Tiso
Nina Ihling
Nina Ihling
Sonja Kubicki
Sonja Kubicki
Andreas Biselli
Andreas Biselli
Andreas Schonhoff
Andreas Schonhoff
Isabel Bator
Isabel Bator
Stephan Thies
Stephan Thies
Tobias Karmainski
Tobias Karmainski
Sebastian Kruth
Sebastian Kruth
Anna-Lena Willenbrink
Anna-Lena Willenbrink
Anita Loeschcke
Anita Loeschcke
Petra Zapp
Petra Zapp
Andreas Jupke
Andreas Jupke
Karl-Erich Jaeger
Karl-Erich Jaeger
Karl-Erich Jaeger
Jochen Büchs
Jochen Büchs
Lars M. Blank
Lars M. Blank
Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida
Frontiers in Bioengineering and Biotechnology
rhamnolipids
Pseudomonas putida KT2440
synthetic biology
metabolic engineering
oxygen transfer rate
liquid–liquid extraction
title Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida
title_full Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida
title_fullStr Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida
title_full_unstemmed Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida
title_short Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida
title_sort integration of genetic and process engineering for optimized rhamnolipid production using pseudomonas putida
topic rhamnolipids
Pseudomonas putida KT2440
synthetic biology
metabolic engineering
oxygen transfer rate
liquid–liquid extraction
url https://www.frontiersin.org/article/10.3389/fbioe.2020.00976/full
work_keys_str_mv AT tilltiso integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT tilltiso integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT ninaihling integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT ninaihling integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT sonjakubicki integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT sonjakubicki integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT andreasbiselli integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT andreasbiselli integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT andreasschonhoff integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT andreasschonhoff integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT isabelbator integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT isabelbator integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT stephanthies integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT stephanthies integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT tobiaskarmainski integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT tobiaskarmainski integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT sebastiankruth integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT sebastiankruth integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT annalenawillenbrink integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT annalenawillenbrink integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT anitaloeschcke integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT anitaloeschcke integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT petrazapp integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT petrazapp integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT andreasjupke integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT andreasjupke integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT karlerichjaeger integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT karlerichjaeger integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT karlerichjaeger integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT jochenbuchs integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT jochenbuchs integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT larsmblank integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida
AT larsmblank integrationofgeneticandprocessengineeringforoptimizedrhamnolipidproductionusingpseudomonasputida