NIR Reflection Augmentation for DeepLearning-Based NIR Face Recognition

Face recognition using a near-infrared (NIR) sensor is widely applied to practical applications such as mobile unlocking or access control. However, unlike RGB sensors, few deep learning approaches have studied NIR face recognition. We conducted comparative experiments for the application of deep le...

Full description

Bibliographic Details
Main Authors: Hoon Jo, Whoi-Yul Kim
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/10/1234
Description
Summary:Face recognition using a near-infrared (NIR) sensor is widely applied to practical applications such as mobile unlocking or access control. However, unlike RGB sensors, few deep learning approaches have studied NIR face recognition. We conducted comparative experiments for the application of deep learning to NIR face recognition. To accomplish this, we gathered five public databases and trained two deep learning architectures. In our experiments, we found that simple architecture could have a competitive performance on the NIR face databases that are mostly composed of frontal face images. Furthermore, we propose a data augmentation method to train the architectures to improve recognition of users who wear glasses. With this augmented training set, the recognition rate for users who wear glasses increased by up to 16%. This result implies that the recognition of those who wear glasses can be overcome using this simple method without constructing an additional training set. Furthermore, the model that uses augmented data has symmetry with those trained with real glasses-wearing data regarding the recognition of people who wear glasses.
ISSN:2073-8994