The Well Posedness for Nonhomogeneous Boussinesq Equations

This paper is devoted to studying the Cauchy problem for non-homogeneous Boussinesq equations. We built the results on the critical Besov spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow>...

Full description

Bibliographic Details
Main Authors: Yan Liu, Baiping Ouyang
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/11/2110
_version_ 1797508363677859840
author Yan Liu
Baiping Ouyang
author_facet Yan Liu
Baiping Ouyang
author_sort Yan Liu
collection DOAJ
description This paper is devoted to studying the Cauchy problem for non-homogeneous Boussinesq equations. We built the results on the critical Besov spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>∈</mo><msubsup><mi>L</mi><mi>T</mi><mo>∞</mo></msubsup><mrow><mo>(</mo><msubsup><mover accent="true"><mi>B</mi><mo>˙</mo></mover><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>/</mo><mi>p</mi></mrow></msubsup><mo>)</mo></mrow><mo>×</mo><msubsup><mi>L</mi><mi>T</mi><mo>∞</mo></msubsup><mrow><mo>(</mo><msubsup><mover accent="true"><mi>B</mi><mo>˙</mo></mover><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>/</mo><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mo>⋂</mo><msubsup><mi>L</mi><mi>T</mi><mn>1</mn></msubsup><mrow><mo>(</mo><msubsup><mover accent="true"><mi>B</mi><mo>˙</mo></mover><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>2</mn><mi>N</mi></mrow></semantics></math></inline-formula>. We proved the global existence of the solution when the initial velocity is small with respect to the viscosity, as well as the initial temperature approaches a positive constant. Furthermore, we proved the uniqueness for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo>≤</mo><mi>N</mi></mrow></semantics></math></inline-formula>. Our results can been seen as a version of symmetry in Besov space for the Boussinesq equations.
first_indexed 2024-03-10T05:01:05Z
format Article
id doaj.art-4fef51d036ba43dda3c7a13d1c5e8ac2
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T05:01:05Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-4fef51d036ba43dda3c7a13d1c5e8ac22023-11-23T01:45:07ZengMDPI AGSymmetry2073-89942021-11-011311211010.3390/sym13112110The Well Posedness for Nonhomogeneous Boussinesq EquationsYan Liu0Baiping Ouyang1Department of Mathematics, Guangdong University of Finance, Guangzhou 510521, ChinaSchool of Data Science, Guangzhou Huashang College, Guangzhou 511300, ChinaThis paper is devoted to studying the Cauchy problem for non-homogeneous Boussinesq equations. We built the results on the critical Besov spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>∈</mo><msubsup><mi>L</mi><mi>T</mi><mo>∞</mo></msubsup><mrow><mo>(</mo><msubsup><mover accent="true"><mi>B</mi><mo>˙</mo></mover><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>/</mo><mi>p</mi></mrow></msubsup><mo>)</mo></mrow><mo>×</mo><msubsup><mi>L</mi><mi>T</mi><mo>∞</mo></msubsup><mrow><mo>(</mo><msubsup><mover accent="true"><mi>B</mi><mo>˙</mo></mover><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>/</mo><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mo>⋂</mo><msubsup><mi>L</mi><mi>T</mi><mn>1</mn></msubsup><mrow><mo>(</mo><msubsup><mover accent="true"><mi>B</mi><mo>˙</mo></mover><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>2</mn><mi>N</mi></mrow></semantics></math></inline-formula>. We proved the global existence of the solution when the initial velocity is small with respect to the viscosity, as well as the initial temperature approaches a positive constant. Furthermore, we proved the uniqueness for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo>≤</mo><mi>N</mi></mrow></semantics></math></inline-formula>. Our results can been seen as a version of symmetry in Besov space for the Boussinesq equations.https://www.mdpi.com/2073-8994/13/11/2110non homogenous boussinesq equationsglobal well-posednesslittlewood-paley decomposition
spellingShingle Yan Liu
Baiping Ouyang
The Well Posedness for Nonhomogeneous Boussinesq Equations
Symmetry
non homogenous boussinesq equations
global well-posedness
littlewood-paley decomposition
title The Well Posedness for Nonhomogeneous Boussinesq Equations
title_full The Well Posedness for Nonhomogeneous Boussinesq Equations
title_fullStr The Well Posedness for Nonhomogeneous Boussinesq Equations
title_full_unstemmed The Well Posedness for Nonhomogeneous Boussinesq Equations
title_short The Well Posedness for Nonhomogeneous Boussinesq Equations
title_sort well posedness for nonhomogeneous boussinesq equations
topic non homogenous boussinesq equations
global well-posedness
littlewood-paley decomposition
url https://www.mdpi.com/2073-8994/13/11/2110
work_keys_str_mv AT yanliu thewellposednessfornonhomogeneousboussinesqequations
AT baipingouyang thewellposednessfornonhomogeneousboussinesqequations
AT yanliu wellposednessfornonhomogeneousboussinesqequations
AT baipingouyang wellposednessfornonhomogeneousboussinesqequations