Evaluation of Heuristics for Taken’s Theorem Hyper-Parameters Optimization in Time Series Forecasting Tasks

This study compares three methods for optimizing the hyper-parameters <i>m</i> (embedding dimension) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math>...

Full description

Bibliographic Details
Main Authors: Rodrigo Hernandez-Mazariegos, Jose Ortiz-Bejar, Jesus Ortiz-Bejar
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Engineering Proceedings
Subjects:
Online Access:https://www.mdpi.com/2673-4591/39/1/71
_version_ 1797580302267187200
author Rodrigo Hernandez-Mazariegos
Jose Ortiz-Bejar
Jesus Ortiz-Bejar
author_facet Rodrigo Hernandez-Mazariegos
Jose Ortiz-Bejar
Jesus Ortiz-Bejar
author_sort Rodrigo Hernandez-Mazariegos
collection DOAJ
description This study compares three methods for optimizing the hyper-parameters <i>m</i> (embedding dimension) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> (time delay) from Taken’s Theorem for time-series forecasting to train a Support Vector Regression system (SVR). Firstly, we use a method which utilizes Mutual Information for optimizing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> and a technique referred to as “Dimension Congruence” to optimize <i>m</i>. Secondly, we employ a grid search and random search, combined with a cross-validation scheme, to optimize <i>m</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> hyper-parameters. Lastly, various real-world time series are used to analyze the three proposed strategies.
first_indexed 2024-03-10T22:48:12Z
format Article
id doaj.art-4ff031625bdd4fa3a6d6504ea583ce8c
institution Directory Open Access Journal
issn 2673-4591
language English
last_indexed 2024-03-10T22:48:12Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Engineering Proceedings
spelling doaj.art-4ff031625bdd4fa3a6d6504ea583ce8c2023-11-19T10:31:11ZengMDPI AGEngineering Proceedings2673-45912023-07-013917110.3390/engproc2023039071Evaluation of Heuristics for Taken’s Theorem Hyper-Parameters Optimization in Time Series Forecasting TasksRodrigo Hernandez-Mazariegos0Jose Ortiz-Bejar1Jesus Ortiz-Bejar2Facultad de Ciencias Físico-Matemáticas “Mat. Luis Manuel Rivera Gutiérrez”, UMSNH, Avenida Universidad 100, Villa Universidad, 58060 Morelia, Michoacán, MexicoDivisión de Estudios de Posgrado de la Facultad de Ingeniería Eléctrica, UMSNH, Building “Ω2” Ciudad Universitaria, Francisco J. Múgica S/N, 58030 Morelia, Michoacán, MexicoFacultad de Ciencias Físico-Matemáticas “Mat. Luis Manuel Rivera Gutiérrez”, UMSNH, Avenida Universidad 100, Villa Universidad, 58060 Morelia, Michoacán, MexicoThis study compares three methods for optimizing the hyper-parameters <i>m</i> (embedding dimension) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> (time delay) from Taken’s Theorem for time-series forecasting to train a Support Vector Regression system (SVR). Firstly, we use a method which utilizes Mutual Information for optimizing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> and a technique referred to as “Dimension Congruence” to optimize <i>m</i>. Secondly, we employ a grid search and random search, combined with a cross-validation scheme, to optimize <i>m</i> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> hyper-parameters. Lastly, various real-world time series are used to analyze the three proposed strategies.https://www.mdpi.com/2673-4591/39/1/71Taken’s Theoremtime-seriesSVR forecastingmutual informationdimension congruencerandom search
spellingShingle Rodrigo Hernandez-Mazariegos
Jose Ortiz-Bejar
Jesus Ortiz-Bejar
Evaluation of Heuristics for Taken’s Theorem Hyper-Parameters Optimization in Time Series Forecasting Tasks
Engineering Proceedings
Taken’s Theorem
time-series
SVR forecasting
mutual information
dimension congruence
random search
title Evaluation of Heuristics for Taken’s Theorem Hyper-Parameters Optimization in Time Series Forecasting Tasks
title_full Evaluation of Heuristics for Taken’s Theorem Hyper-Parameters Optimization in Time Series Forecasting Tasks
title_fullStr Evaluation of Heuristics for Taken’s Theorem Hyper-Parameters Optimization in Time Series Forecasting Tasks
title_full_unstemmed Evaluation of Heuristics for Taken’s Theorem Hyper-Parameters Optimization in Time Series Forecasting Tasks
title_short Evaluation of Heuristics for Taken’s Theorem Hyper-Parameters Optimization in Time Series Forecasting Tasks
title_sort evaluation of heuristics for taken s theorem hyper parameters optimization in time series forecasting tasks
topic Taken’s Theorem
time-series
SVR forecasting
mutual information
dimension congruence
random search
url https://www.mdpi.com/2673-4591/39/1/71
work_keys_str_mv AT rodrigohernandezmazariegos evaluationofheuristicsfortakenstheoremhyperparametersoptimizationintimeseriesforecastingtasks
AT joseortizbejar evaluationofheuristicsfortakenstheoremhyperparametersoptimizationintimeseriesforecastingtasks
AT jesusortizbejar evaluationofheuristicsfortakenstheoremhyperparametersoptimizationintimeseriesforecastingtasks