Advancing glioma diagnosis: Integrating custom U-Net and VGG-16 for improved grading in MR imaging

In the realm of medical imaging, the precise segmentation and classification of gliomas represent fundamental challenges with profound clinical implications. Leveraging the BraTS 2018 dataset as a standard benchmark, this study delves into the potential of advanced deep learning models for addressin...

Full description

Bibliographic Details
Main Authors: Sonam Saluja, Munesh Chandra Trivedi, Shiv S. Sarangdevot
Format: Article
Language:English
Published: AIMS Press 2024-02-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2024191?viewType=HTML
Description
Summary:In the realm of medical imaging, the precise segmentation and classification of gliomas represent fundamental challenges with profound clinical implications. Leveraging the BraTS 2018 dataset as a standard benchmark, this study delves into the potential of advanced deep learning models for addressing these challenges. We propose a novel approach that integrates a customized U-Net for segmentation and VGG-16 for classification. The U-Net, with its tailored encoder-decoder pathways, accurately identifies glioma regions, thus improving tumor localization. The fine-tuned VGG-16, featuring a customized output layer, precisely differentiates between low-grade and high-grade gliomas. To ensure consistency in data pre-processing, a standardized methodology involving gamma correction, data augmentation, and normalization is introduced. This novel integration surpasses existing methods, offering significantly improved glioma diagnosis, validated by high segmentation dice scores (WT: 0.96, TC: 0.92, ET: 0.89), and a remarkable overall classification accuracy of 97.89%. The experimental findings underscore the potential of integrating deep learning-based methodologies for tumor segmentation and classification in enhancing glioma diagnosis and formulating subsequent treatment strategies.
ISSN:1551-0018