A single-cell transcriptomic and anatomic atlas of mouse dorsal raphe Pet1 neurons
Among the brainstem raphe nuclei, the dorsal raphe nucleus (DR) contains the greatest number of Pet1-lineage neurons, a predominantly serotonergic group distributed throughout DR subdomains. These neurons collectively regulate diverse physiology and behavior and are often therapeutically targeted to...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
eLife Sciences Publications Ltd
2020-06-01
|
Series: | eLife |
Subjects: | |
Online Access: | https://elifesciences.org/articles/55523 |
_version_ | 1818028302405730304 |
---|---|
author | Benjamin W Okaty Nikita Sturrock Yasmin Escobedo Lozoya YoonJeung Chang Rebecca A Senft Krissy A Lyon Olga V Alekseyenko Susan M Dymecki |
author_facet | Benjamin W Okaty Nikita Sturrock Yasmin Escobedo Lozoya YoonJeung Chang Rebecca A Senft Krissy A Lyon Olga V Alekseyenko Susan M Dymecki |
author_sort | Benjamin W Okaty |
collection | DOAJ |
description | Among the brainstem raphe nuclei, the dorsal raphe nucleus (DR) contains the greatest number of Pet1-lineage neurons, a predominantly serotonergic group distributed throughout DR subdomains. These neurons collectively regulate diverse physiology and behavior and are often therapeutically targeted to treat affective disorders. Characterizing Pet1 neuron molecular heterogeneity and relating it to anatomy is vital for understanding DR functional organization, with potential to inform therapeutic separability. Here we use high-throughput and DR subdomain-targeted single-cell transcriptomics and intersectional genetic tools to map molecular and anatomical diversity of DR-Pet1 neurons. We describe up to fourteen neuron subtypes, many showing biased cell body distributions across the DR. We further show that P2ry1-Pet1 DR neurons – the most molecularly distinct subtype – possess unique efferent projections and electrophysiological properties. These data complement and extend previous DR characterizations, combining intersectional genetics with multiple transcriptomic modalities to achieve fine-scale molecular and anatomic identification of Pet1 neuron subtypes. |
first_indexed | 2024-12-10T05:01:38Z |
format | Article |
id | doaj.art-500b85e0a61c417fad43b75c40ff1132 |
institution | Directory Open Access Journal |
issn | 2050-084X |
language | English |
last_indexed | 2024-12-10T05:01:38Z |
publishDate | 2020-06-01 |
publisher | eLife Sciences Publications Ltd |
record_format | Article |
series | eLife |
spelling | doaj.art-500b85e0a61c417fad43b75c40ff11322022-12-22T02:01:23ZengeLife Sciences Publications LtdeLife2050-084X2020-06-01910.7554/eLife.55523A single-cell transcriptomic and anatomic atlas of mouse dorsal raphe Pet1 neuronsBenjamin W Okaty0https://orcid.org/0000-0003-1281-2244Nikita Sturrock1https://orcid.org/0000-0002-1635-6760Yasmin Escobedo Lozoya2https://orcid.org/0000-0001-8197-770XYoonJeung Chang3https://orcid.org/0000-0001-9549-8208Rebecca A Senft4https://orcid.org/0000-0003-0081-4170Krissy A Lyon5https://orcid.org/0000-0002-4453-8406Olga V Alekseyenko6https://orcid.org/0000-0003-1645-5133Susan M Dymecki7https://orcid.org/0000-0003-0910-9881Department of Genetics, Harvard Medical School, Boston, United StatesDepartment of Genetics, Harvard Medical School, Boston, United StatesDepartment of Genetics, Harvard Medical School, Boston, United StatesDepartment of Genetics, Harvard Medical School, Boston, United StatesDepartment of Genetics, Harvard Medical School, Boston, United StatesDepartment of Genetics, Harvard Medical School, Boston, United StatesDepartment of Genetics, Harvard Medical School, Boston, United StatesDepartment of Genetics, Harvard Medical School, Boston, United StatesAmong the brainstem raphe nuclei, the dorsal raphe nucleus (DR) contains the greatest number of Pet1-lineage neurons, a predominantly serotonergic group distributed throughout DR subdomains. These neurons collectively regulate diverse physiology and behavior and are often therapeutically targeted to treat affective disorders. Characterizing Pet1 neuron molecular heterogeneity and relating it to anatomy is vital for understanding DR functional organization, with potential to inform therapeutic separability. Here we use high-throughput and DR subdomain-targeted single-cell transcriptomics and intersectional genetic tools to map molecular and anatomical diversity of DR-Pet1 neurons. We describe up to fourteen neuron subtypes, many showing biased cell body distributions across the DR. We further show that P2ry1-Pet1 DR neurons – the most molecularly distinct subtype – possess unique efferent projections and electrophysiological properties. These data complement and extend previous DR characterizations, combining intersectional genetics with multiple transcriptomic modalities to achieve fine-scale molecular and anatomic identification of Pet1 neuron subtypes.https://elifesciences.org/articles/55523serotonindorsal raphePet1single cell RNA-seqserotonin neuronsneuronal diversity |
spellingShingle | Benjamin W Okaty Nikita Sturrock Yasmin Escobedo Lozoya YoonJeung Chang Rebecca A Senft Krissy A Lyon Olga V Alekseyenko Susan M Dymecki A single-cell transcriptomic and anatomic atlas of mouse dorsal raphe Pet1 neurons eLife serotonin dorsal raphe Pet1 single cell RNA-seq serotonin neurons neuronal diversity |
title | A single-cell transcriptomic and anatomic atlas of mouse dorsal raphe Pet1 neurons |
title_full | A single-cell transcriptomic and anatomic atlas of mouse dorsal raphe Pet1 neurons |
title_fullStr | A single-cell transcriptomic and anatomic atlas of mouse dorsal raphe Pet1 neurons |
title_full_unstemmed | A single-cell transcriptomic and anatomic atlas of mouse dorsal raphe Pet1 neurons |
title_short | A single-cell transcriptomic and anatomic atlas of mouse dorsal raphe Pet1 neurons |
title_sort | single cell transcriptomic and anatomic atlas of mouse dorsal raphe pet1 neurons |
topic | serotonin dorsal raphe Pet1 single cell RNA-seq serotonin neurons neuronal diversity |
url | https://elifesciences.org/articles/55523 |
work_keys_str_mv | AT benjaminwokaty asinglecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons AT nikitasturrock asinglecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons AT yasminescobedolozoya asinglecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons AT yoonjeungchang asinglecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons AT rebeccaasenft asinglecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons AT krissyalyon asinglecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons AT olgavalekseyenko asinglecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons AT susanmdymecki asinglecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons AT benjaminwokaty singlecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons AT nikitasturrock singlecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons AT yasminescobedolozoya singlecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons AT yoonjeungchang singlecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons AT rebeccaasenft singlecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons AT krissyalyon singlecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons AT olgavalekseyenko singlecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons AT susanmdymecki singlecelltranscriptomicandanatomicatlasofmousedorsalraphepet1neurons |