The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性)

研究微分多项式环R[x;δ]和Ore扩张环R[x;α,δ]的广义半交换性质和广义对称性质,使用逐项分析方法证明了 :设R是δ-Armendariz环,则R[x;δ]是诣零半交换环(弱半交换环、广义弱对称环、弱zip环、右弱McCoy 环)当且仅当R是诣零半交换环(弱半交换环、广义弱对称环、弱zip环、右弱McCoy环);设R是弱2-素环和(α,δ)-条件环,则R[x;α,δ]是诣零半交换环(分别地,弱半交换环,广义弱对称环)....

Full description

Bibliographic Details
Main Authors: RENYanli(任艳丽), ZHANGJiulin(张玖琳), WANGYao(王尧)
Format: Article
Language:zho
Published: Zhejiang University Press 2016-09-01
Series:Zhejiang Daxue xuebao. Lixue ban
Subjects:
Online Access:https://doi.org/10.3785/j.issn.1008-9497.2016.05.001
_version_ 1797235793985536000
author RENYanli(任艳丽)
ZHANGJiulin(张玖琳)
WANGYao(王尧)
author_facet RENYanli(任艳丽)
ZHANGJiulin(张玖琳)
WANGYao(王尧)
author_sort RENYanli(任艳丽)
collection DOAJ
description 研究微分多项式环R[x;δ]和Ore扩张环R[x;α,δ]的广义半交换性质和广义对称性质,使用逐项分析方法证明了 :设R是δ-Armendariz环,则R[x;δ]是诣零半交换环(弱半交换环、广义弱对称环、弱zip环、右弱McCoy 环)当且仅当R是诣零半交换环(弱半交换环、广义弱对称环、弱zip环、右弱McCoy环);设R是弱2-素环和(α,δ)-条件环,则R[x;α,δ]是诣零半交换环(分别地,弱半交换环,广义弱对称环).
first_indexed 2024-04-24T16:53:37Z
format Article
id doaj.art-500bc5f9c1044b4ea03c967e56ed75be
institution Directory Open Access Journal
issn 1008-9497
language zho
last_indexed 2024-04-24T16:53:37Z
publishDate 2016-09-01
publisher Zhejiang University Press
record_format Article
series Zhejiang Daxue xuebao. Lixue ban
spelling doaj.art-500bc5f9c1044b4ea03c967e56ed75be2024-03-29T01:58:36ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972016-09-0143550551110.3785/j.issn.1008-9497.2016.05.001The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性)RENYanli(任艳丽)0https://orcid.org/0000-0002-2439-6172ZHANGJiulin(张玖琳)1WANGYao(王尧)2 1.School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing 211171, China( 1.南京晓庄学院数学与信息技术学院,江苏 南京 211171) 2.School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China( 2.南京信息工程大学数学与统计学院,江苏 南京 210044) 2.School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China( 2.南京信息工程大学数学与统计学院,江苏 南京 210044)研究微分多项式环R[x;δ]和Ore扩张环R[x;α,δ]的广义半交换性质和广义对称性质,使用逐项分析方法证明了 :设R是δ-Armendariz环,则R[x;δ]是诣零半交换环(弱半交换环、广义弱对称环、弱zip环、右弱McCoy 环)当且仅当R是诣零半交换环(弱半交换环、广义弱对称环、弱zip环、右弱McCoy环);设R是弱2-素环和(α,δ)-条件环,则R[x;α,δ]是诣零半交换环(分别地,弱半交换环,广义弱对称环).https://doi.org/10.3785/j.issn.1008-9497.2016.05.001弱2-素环δ-armendariz环(α,δ)-条件环诣零半交换环广义弱对称环
spellingShingle RENYanli(任艳丽)
ZHANGJiulin(张玖琳)
WANGYao(王尧)
The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性)
Zhejiang Daxue xuebao. Lixue ban
弱2-素环
δ-armendariz环
(α,δ)-条件环
诣零半交换环
广义弱对称环
title The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性)
title_full The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性)
title_fullStr The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性)
title_full_unstemmed The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性)
title_short The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性)
title_sort semicommutativity and symmetry of differential polynomial rings 微分多项式环的半交换性和对称性
topic 弱2-素环
δ-armendariz环
(α,δ)-条件环
诣零半交换环
广义弱对称环
url https://doi.org/10.3785/j.issn.1008-9497.2016.05.001
work_keys_str_mv AT renyanlirènyànlì thesemicommutativityandsymmetryofdifferentialpolynomialringswēifēnduōxiàngshìhuándebànjiāohuànxìnghéduìchēngxìng
AT zhangjiulinzhāngjiǔlín thesemicommutativityandsymmetryofdifferentialpolynomialringswēifēnduōxiàngshìhuándebànjiāohuànxìnghéduìchēngxìng
AT wangyaowángyáo thesemicommutativityandsymmetryofdifferentialpolynomialringswēifēnduōxiàngshìhuándebànjiāohuànxìnghéduìchēngxìng
AT renyanlirènyànlì semicommutativityandsymmetryofdifferentialpolynomialringswēifēnduōxiàngshìhuándebànjiāohuànxìnghéduìchēngxìng
AT zhangjiulinzhāngjiǔlín semicommutativityandsymmetryofdifferentialpolynomialringswēifēnduōxiàngshìhuándebànjiāohuànxìnghéduìchēngxìng
AT wangyaowángyáo semicommutativityandsymmetryofdifferentialpolynomialringswēifēnduōxiàngshìhuándebànjiāohuànxìnghéduìchēngxìng