The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性)
研究微分多项式环R[x;δ]和Ore扩张环R[x;α,δ]的广义半交换性质和广义对称性质,使用逐项分析方法证明了 :设R是δ-Armendariz环,则R[x;δ]是诣零半交换环(弱半交换环、广义弱对称环、弱zip环、右弱McCoy 环)当且仅当R是诣零半交换环(弱半交换环、广义弱对称环、弱zip环、右弱McCoy环);设R是弱2-素环和(α,δ)-条件环,则R[x;α,δ]是诣零半交换环(分别地,弱半交换环,广义弱对称环)....
Main Authors: | , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2016-09-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/10.3785/j.issn.1008-9497.2016.05.001 |
_version_ | 1797235793985536000 |
---|---|
author | RENYanli(任艳丽) ZHANGJiulin(张玖琳) WANGYao(王尧) |
author_facet | RENYanli(任艳丽) ZHANGJiulin(张玖琳) WANGYao(王尧) |
author_sort | RENYanli(任艳丽) |
collection | DOAJ |
description | 研究微分多项式环R[x;δ]和Ore扩张环R[x;α,δ]的广义半交换性质和广义对称性质,使用逐项分析方法证明了 :设R是δ-Armendariz环,则R[x;δ]是诣零半交换环(弱半交换环、广义弱对称环、弱zip环、右弱McCoy 环)当且仅当R是诣零半交换环(弱半交换环、广义弱对称环、弱zip环、右弱McCoy环);设R是弱2-素环和(α,δ)-条件环,则R[x;α,δ]是诣零半交换环(分别地,弱半交换环,广义弱对称环). |
first_indexed | 2024-04-24T16:53:37Z |
format | Article |
id | doaj.art-500bc5f9c1044b4ea03c967e56ed75be |
institution | Directory Open Access Journal |
issn | 1008-9497 |
language | zho |
last_indexed | 2024-04-24T16:53:37Z |
publishDate | 2016-09-01 |
publisher | Zhejiang University Press |
record_format | Article |
series | Zhejiang Daxue xuebao. Lixue ban |
spelling | doaj.art-500bc5f9c1044b4ea03c967e56ed75be2024-03-29T01:58:36ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972016-09-0143550551110.3785/j.issn.1008-9497.2016.05.001The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性)RENYanli(任艳丽)0https://orcid.org/0000-0002-2439-6172ZHANGJiulin(张玖琳)1WANGYao(王尧)2 1.School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing 211171, China( 1.南京晓庄学院数学与信息技术学院,江苏 南京 211171) 2.School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China( 2.南京信息工程大学数学与统计学院,江苏 南京 210044) 2.School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China( 2.南京信息工程大学数学与统计学院,江苏 南京 210044)研究微分多项式环R[x;δ]和Ore扩张环R[x;α,δ]的广义半交换性质和广义对称性质,使用逐项分析方法证明了 :设R是δ-Armendariz环,则R[x;δ]是诣零半交换环(弱半交换环、广义弱对称环、弱zip环、右弱McCoy 环)当且仅当R是诣零半交换环(弱半交换环、广义弱对称环、弱zip环、右弱McCoy环);设R是弱2-素环和(α,δ)-条件环,则R[x;α,δ]是诣零半交换环(分别地,弱半交换环,广义弱对称环).https://doi.org/10.3785/j.issn.1008-9497.2016.05.001弱2-素环δ-armendariz环(α,δ)-条件环诣零半交换环广义弱对称环 |
spellingShingle | RENYanli(任艳丽) ZHANGJiulin(张玖琳) WANGYao(王尧) The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性) Zhejiang Daxue xuebao. Lixue ban 弱2-素环 δ-armendariz环 (α,δ)-条件环 诣零半交换环 广义弱对称环 |
title | The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性) |
title_full | The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性) |
title_fullStr | The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性) |
title_full_unstemmed | The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性) |
title_short | The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性) |
title_sort | semicommutativity and symmetry of differential polynomial rings 微分多项式环的半交换性和对称性 |
topic | 弱2-素环 δ-armendariz环 (α,δ)-条件环 诣零半交换环 广义弱对称环 |
url | https://doi.org/10.3785/j.issn.1008-9497.2016.05.001 |
work_keys_str_mv | AT renyanlirènyànlì thesemicommutativityandsymmetryofdifferentialpolynomialringswēifēnduōxiàngshìhuándebànjiāohuànxìnghéduìchēngxìng AT zhangjiulinzhāngjiǔlín thesemicommutativityandsymmetryofdifferentialpolynomialringswēifēnduōxiàngshìhuándebànjiāohuànxìnghéduìchēngxìng AT wangyaowángyáo thesemicommutativityandsymmetryofdifferentialpolynomialringswēifēnduōxiàngshìhuándebànjiāohuànxìnghéduìchēngxìng AT renyanlirènyànlì semicommutativityandsymmetryofdifferentialpolynomialringswēifēnduōxiàngshìhuándebànjiāohuànxìnghéduìchēngxìng AT zhangjiulinzhāngjiǔlín semicommutativityandsymmetryofdifferentialpolynomialringswēifēnduōxiàngshìhuándebànjiāohuànxìnghéduìchēngxìng AT wangyaowángyáo semicommutativityandsymmetryofdifferentialpolynomialringswēifēnduōxiàngshìhuándebànjiāohuànxìnghéduìchēngxìng |