The semicommutativity and symmetry of differential polynomial rings(微分多项式环的半交换性和对称性)
研究微分多项式环R[x;δ]和Ore扩张环R[x;α,δ]的广义半交换性质和广义对称性质,使用逐项分析方法证明了 :设R是δ-Armendariz环,则R[x;δ]是诣零半交换环(弱半交换环、广义弱对称环、弱zip环、右弱McCoy 环)当且仅当R是诣零半交换环(弱半交换环、广义弱对称环、弱zip环、右弱McCoy环);设R是弱2-素环和(α,δ)-条件环,则R[x;α,δ]是诣零半交换环(分别地,弱半交换环,广义弱对称环)....
Main Authors: | RENYanli(任艳丽), ZHANGJiulin(张玖琳), WANGYao(王尧) |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2016-09-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/10.3785/j.issn.1008-9497.2016.05.001 |
Similar Items
-
The extensions of weak McCoy rings(弱McCoy环的扩张)
by: WANGYao(王尧), et al.
Published: (2014-07-01) -
On right (left) quasi-α-reversible rings(右(左)拟α-可逆环)
by: WEIJie(魏杰), et al.
Published: (2014-11-01) -
Some properties on group-graded weakly regular rings(群分次弱正则环的若干性质)
by: WANGGuo-jun(汪国军)
Published: (2006-07-01) -
1.School of Mathematics and Statistics, Nanjing University of Information Technology, Nanjing 210044, China; 2. School of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China)*-nil McCoy ring(*-诣零McCoy环)
by: 王尧(WANG Yao), et al.
Published: (2024-03-01) -
PI-injective module(PI-内射模)
by: HUJiang-sheng(胡江胜), et al.
Published: (2010-03-01)