Optimized RNA-Silencing Strategies for <i>Rice Ragged Stunt Virus</i> Resistance in Rice
<i>Rice ragged stunt virus</i> (RRSV) is one of the most damaging viruses of the rice culture area in south and far-eastern Asia. To date, no genetic resistance has been identified and only expensive and non-environmentally friendly chemical treatments are deployed to fight this importan...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Plants |
Subjects: | |
Online Access: | https://www.mdpi.com/2223-7747/10/10/2008 |
_version_ | 1797513339317780480 |
---|---|
author | Severine Lacombe Martine Bangratz Hoang Anh Ta Thanh Duc Nguyen Pascal Gantet Christophe Brugidou |
author_facet | Severine Lacombe Martine Bangratz Hoang Anh Ta Thanh Duc Nguyen Pascal Gantet Christophe Brugidou |
author_sort | Severine Lacombe |
collection | DOAJ |
description | <i>Rice ragged stunt virus</i> (RRSV) is one of the most damaging viruses of the rice culture area in south and far-eastern Asia. To date, no genetic resistance has been identified and only expensive and non-environmentally friendly chemical treatments are deployed to fight this important disease. Non-chemical approaches based on RNA-silencing have been developed as resistance strategies against viruses. Here, we optimized classical miRNA and siRNA-based strategies to obtain efficient and durable resistance to RRSV. miRNA-based strategies are involved in producing artificial miRNA (amiR) targeting viral genomes in plants. Classically, only one amiR is produced from a single construct. We demonstrated for the first time that two amiRs targeting conserved regions of RRSV genomes could be transgenically produced in <i>Nicotiana benthamiana</i> and in rice for a single precursor. Transgenic rice plants producing either one or two amiR were produced. Despite efficient amiR accumulations, miRNA-based strategies with single or double amiRs failed to achieve efficient RRSV resistance in transformed rice plants. This suggests that this strategy may not be adapted to RRSV, which could rapidly evolve to counteract them. Another RNA-silencing-based method for viral resistance concerns producing several viral siRNAs targeting a viral fragment. These viral siRNAs are produced from an inverted repeat construct carrying the targeted viral fragment. Here, we optimized the inverted repeat construct using a chimeric fragment carrying conserved sequences of three different RRSV genes instead of one. Of the three selected homozygous transgenic plants, one failed to accumulate the expected siRNA. The two other ones accumulated siRNAs from either one or three fragments. A strong reduction of RRSV symptoms was observed only in transgenic plants expressing siRNAs. We consequently demonstrated, for the first time, an efficient and environmentally friendly resistance to RRSV in rice based on the siRNA-mediated strategy. |
first_indexed | 2024-03-10T06:16:10Z |
format | Article |
id | doaj.art-501972c04acb4e67a2dd68818fbe41d9 |
institution | Directory Open Access Journal |
issn | 2223-7747 |
language | English |
last_indexed | 2024-03-10T06:16:10Z |
publishDate | 2021-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Plants |
spelling | doaj.art-501972c04acb4e67a2dd68818fbe41d92023-11-22T19:42:16ZengMDPI AGPlants2223-77472021-09-011010200810.3390/plants10102008Optimized RNA-Silencing Strategies for <i>Rice Ragged Stunt Virus</i> Resistance in RiceSeverine Lacombe0Martine Bangratz1Hoang Anh Ta2Thanh Duc Nguyen3Pascal Gantet4Christophe Brugidou5PHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34090 Montpellier, FrancePHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34090 Montpellier, FrancePlant Protection Research Institute (PPRI), Bac Tu Liem District, Hanoi 10000, VietnamAgricultural Genetics Institute, Bac Tu Liem District, Hanoi 10000, VietnamUMR DIADE, Université de Montpellier, IRD, 34090 Montpellier, FrancePHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34090 Montpellier, France<i>Rice ragged stunt virus</i> (RRSV) is one of the most damaging viruses of the rice culture area in south and far-eastern Asia. To date, no genetic resistance has been identified and only expensive and non-environmentally friendly chemical treatments are deployed to fight this important disease. Non-chemical approaches based on RNA-silencing have been developed as resistance strategies against viruses. Here, we optimized classical miRNA and siRNA-based strategies to obtain efficient and durable resistance to RRSV. miRNA-based strategies are involved in producing artificial miRNA (amiR) targeting viral genomes in plants. Classically, only one amiR is produced from a single construct. We demonstrated for the first time that two amiRs targeting conserved regions of RRSV genomes could be transgenically produced in <i>Nicotiana benthamiana</i> and in rice for a single precursor. Transgenic rice plants producing either one or two amiR were produced. Despite efficient amiR accumulations, miRNA-based strategies with single or double amiRs failed to achieve efficient RRSV resistance in transformed rice plants. This suggests that this strategy may not be adapted to RRSV, which could rapidly evolve to counteract them. Another RNA-silencing-based method for viral resistance concerns producing several viral siRNAs targeting a viral fragment. These viral siRNAs are produced from an inverted repeat construct carrying the targeted viral fragment. Here, we optimized the inverted repeat construct using a chimeric fragment carrying conserved sequences of three different RRSV genes instead of one. Of the three selected homozygous transgenic plants, one failed to accumulate the expected siRNA. The two other ones accumulated siRNAs from either one or three fragments. A strong reduction of RRSV symptoms was observed only in transgenic plants expressing siRNAs. We consequently demonstrated, for the first time, an efficient and environmentally friendly resistance to RRSV in rice based on the siRNA-mediated strategy.https://www.mdpi.com/2223-7747/10/10/2008RNA-silencingvirus resistanceRRSVrice |
spellingShingle | Severine Lacombe Martine Bangratz Hoang Anh Ta Thanh Duc Nguyen Pascal Gantet Christophe Brugidou Optimized RNA-Silencing Strategies for <i>Rice Ragged Stunt Virus</i> Resistance in Rice Plants RNA-silencing virus resistance RRSV rice |
title | Optimized RNA-Silencing Strategies for <i>Rice Ragged Stunt Virus</i> Resistance in Rice |
title_full | Optimized RNA-Silencing Strategies for <i>Rice Ragged Stunt Virus</i> Resistance in Rice |
title_fullStr | Optimized RNA-Silencing Strategies for <i>Rice Ragged Stunt Virus</i> Resistance in Rice |
title_full_unstemmed | Optimized RNA-Silencing Strategies for <i>Rice Ragged Stunt Virus</i> Resistance in Rice |
title_short | Optimized RNA-Silencing Strategies for <i>Rice Ragged Stunt Virus</i> Resistance in Rice |
title_sort | optimized rna silencing strategies for i rice ragged stunt virus i resistance in rice |
topic | RNA-silencing virus resistance RRSV rice |
url | https://www.mdpi.com/2223-7747/10/10/2008 |
work_keys_str_mv | AT severinelacombe optimizedrnasilencingstrategiesfoririceraggedstuntvirusiresistanceinrice AT martinebangratz optimizedrnasilencingstrategiesfoririceraggedstuntvirusiresistanceinrice AT hoanganhta optimizedrnasilencingstrategiesfoririceraggedstuntvirusiresistanceinrice AT thanhducnguyen optimizedrnasilencingstrategiesfoririceraggedstuntvirusiresistanceinrice AT pascalgantet optimizedrnasilencingstrategiesfoririceraggedstuntvirusiresistanceinrice AT christophebrugidou optimizedrnasilencingstrategiesfoririceraggedstuntvirusiresistanceinrice |