Iterative methods for monotone nonexpansive mappings in uniformly convex spaces
We show the nonlinear ergodic theorem for monotone 1-Lipschitz mappings in uniformly convex spaces: if C is a bounded closed convex subset of an ordered uniformly convex space (X, ∣·∣, ⪯), T:C → C a monotone 1-Lipschitz mapping and x ⪯ T(x), then the sequence of averages 1n∑i=0n−1Ti(x)$ \frac{1}{n}\...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2021-03-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2020-0170 |
Summary: | We show the nonlinear ergodic theorem for monotone 1-Lipschitz mappings in uniformly convex spaces: if C is a bounded closed convex subset of an ordered uniformly convex space (X, ∣·∣, ⪯), T:C → C a monotone 1-Lipschitz mapping and x ⪯ T(x), then the sequence of averages 1n∑i=0n−1Ti(x)$ \frac{1}{n}\sum\nolimits_{i=0}^{n-1}T^{i}(x) $ converges weakly to a fixed point of T. As a consequence, it is shown that the sequence of Picard’s iteration {Tn(x)} also converges weakly to a fixed point of T. The results are new even in a Hilbert space. The Krasnosel’skiĭ-Mann and the Halpern iteration schemes are studied as well. |
---|---|
ISSN: | 2191-9496 2191-950X |