Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi

The purpose of this study was to screen toddlers who were experiencing severe malnutrition according to province. Sources of research data used were obtained from the Ministry of Health of the Republic of Indonesia. The variables used are toddlers who experience malnutrition according to the Provinc...

Full description

Bibliographic Details
Main Authors: Muhammad Dwi Chandra, Eka Irawan, Ilham Syahputra Saragih, Agus Perdana Windarto, Dedi Suhendro
Format: Article
Language:Indonesian
Published: Puslitbang Sinergis Asa Professional 2021-03-01
Series:BIOS
Subjects:
Online Access:https://bios.sinergis.org/index.php/bios/article/view/19
_version_ 1818533389728219136
author Muhammad Dwi Chandra
Eka Irawan
Ilham Syahputra Saragih
Agus Perdana Windarto
Dedi Suhendro
author_facet Muhammad Dwi Chandra
Eka Irawan
Ilham Syahputra Saragih
Agus Perdana Windarto
Dedi Suhendro
author_sort Muhammad Dwi Chandra
collection DOAJ
description The purpose of this study was to screen toddlers who were experiencing severe malnutrition according to province. Sources of research data used were obtained from the Ministry of Health of the Republic of Indonesia. The variables used are toddlers who experience malnutrition according to the Province. In this study using Data Mining Techniques using the K-means algorithm. It is expected that the results of this study can provide input to the central government to pay more attention to nutritional intake in infants, so as to increase the growth and development of toddlers in Indonesia. . And the data obtained by high clusters are 15 Provinsi yaitu (Aceh, Sumatera Utara, Nusa Tenggara Barat, Nusa Tenggara Timur, Kalimantan Barat, kalimantan Tengah, Kalimantan Selatan, Sulawesi Tengah, Sulawesi Selatan, Sulawesi Tenggara, Sulawesi Tenggara, Gorontalo, Sulawesi Barat, Papua Barat, Papua), dan cluster rendah ada 19 yaitu (Sumatera Barat, Riau, Jambi, Sumatera Selatan, Bengkulu, Lampung, Kep. Bangka Belitung, Kep. Riau, Dki Jakarta, Jawa Barat, Jawa Tengah, DI Yogyakarta, Jawa Timur, Banten, Bali, Kalimantan Timur, Kalimantan Utara, Sulawesi utara, Maluku Utara).
first_indexed 2024-12-11T17:58:03Z
format Article
id doaj.art-50277eea63874b0380fb4a3a92f4459d
institution Directory Open Access Journal
issn 2722-0850
language Indonesian
last_indexed 2024-12-11T17:58:03Z
publishDate 2021-03-01
publisher Puslitbang Sinergis Asa Professional
record_format Article
series BIOS
spelling doaj.art-50277eea63874b0380fb4a3a92f4459d2022-12-22T00:56:00ZindPuslitbang Sinergis Asa ProfessionalBIOS2722-08502021-03-0121303810.37148/bios.v2i1.1919Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut ProvinsiMuhammad Dwi Chandra0Eka Irawan1Ilham Syahputra Saragih2Agus Perdana Windarto3Dedi Suhendro4STIKOM Tunas Bangsa PematangsiantarSTIKOM Tunas Bangsa PematangsiantarSTIKOM Tunas Bangsa PematangsiantarSTIKOM Tunas Bangsa PematangsiantarSTIKOM Tunas Bangsa PematangsiantarThe purpose of this study was to screen toddlers who were experiencing severe malnutrition according to province. Sources of research data used were obtained from the Ministry of Health of the Republic of Indonesia. The variables used are toddlers who experience malnutrition according to the Province. In this study using Data Mining Techniques using the K-means algorithm. It is expected that the results of this study can provide input to the central government to pay more attention to nutritional intake in infants, so as to increase the growth and development of toddlers in Indonesia. . And the data obtained by high clusters are 15 Provinsi yaitu (Aceh, Sumatera Utara, Nusa Tenggara Barat, Nusa Tenggara Timur, Kalimantan Barat, kalimantan Tengah, Kalimantan Selatan, Sulawesi Tengah, Sulawesi Selatan, Sulawesi Tenggara, Sulawesi Tenggara, Gorontalo, Sulawesi Barat, Papua Barat, Papua), dan cluster rendah ada 19 yaitu (Sumatera Barat, Riau, Jambi, Sumatera Selatan, Bengkulu, Lampung, Kep. Bangka Belitung, Kep. Riau, Dki Jakarta, Jawa Barat, Jawa Tengah, DI Yogyakarta, Jawa Timur, Banten, Bali, Kalimantan Timur, Kalimantan Utara, Sulawesi utara, Maluku Utara).https://bios.sinergis.org/index.php/bios/article/view/19k-means algorithmtoddlerbpsprovincedata mining
spellingShingle Muhammad Dwi Chandra
Eka Irawan
Ilham Syahputra Saragih
Agus Perdana Windarto
Dedi Suhendro
Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi
BIOS
k-means algorithm
toddler
bps
province
data mining
title Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi
title_full Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi
title_fullStr Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi
title_full_unstemmed Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi
title_short Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi
title_sort penerapan algoritma k means dalam mengelompokkan balita yang mengalami gizi buruk menurut provinsi
topic k-means algorithm
toddler
bps
province
data mining
url https://bios.sinergis.org/index.php/bios/article/view/19
work_keys_str_mv AT muhammaddwichandra penerapanalgoritmakmeansdalammengelompokkanbalitayangmengalamigiziburukmenurutprovinsi
AT ekairawan penerapanalgoritmakmeansdalammengelompokkanbalitayangmengalamigiziburukmenurutprovinsi
AT ilhamsyahputrasaragih penerapanalgoritmakmeansdalammengelompokkanbalitayangmengalamigiziburukmenurutprovinsi
AT agusperdanawindarto penerapanalgoritmakmeansdalammengelompokkanbalitayangmengalamigiziburukmenurutprovinsi
AT dedisuhendro penerapanalgoritmakmeansdalammengelompokkanbalitayangmengalamigiziburukmenurutprovinsi