Finding Stable Periodic-Frequent Itemsets in Big Columnar Databases

Stable periodic-frequent itemset mining is essential in big data analytics with many real-world applications. It involves extracting all itemsets exhibiting stable periodic behaviors in a temporal database. Most previous studies focused on finding these itemsets in row (temporal) databases and disre...

Full description

Bibliographic Details
Main Authors: Hong N. Dao, Penugonda Ravikumar, Palla Likhitha, Uday Kiran Rage, Yutaka Watanobe, Incheon Paik
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10034746/
_version_ 1828032560685383680
author Hong N. Dao
Penugonda Ravikumar
Palla Likhitha
Uday Kiran Rage
Yutaka Watanobe
Incheon Paik
author_facet Hong N. Dao
Penugonda Ravikumar
Palla Likhitha
Uday Kiran Rage
Yutaka Watanobe
Incheon Paik
author_sort Hong N. Dao
collection DOAJ
description Stable periodic-frequent itemset mining is essential in big data analytics with many real-world applications. It involves extracting all itemsets exhibiting stable periodic behaviors in a temporal database. Most previous studies focused on finding these itemsets in row (temporal) databases and disregarded the occurrences of these itemsets in columnar databases. Furthermore, the naïve approach of transforming a columnar database into a row database and then applying the existing algorithms to find interesting itemsets is not practicable due to computational reasons. With this motivation, this paper proposes a framework to discover stable periodic-frequent itemsets in columnar databases. Our framework employs a novel depth-first search algorithm that compresses a given columnar database into a unified dictionary and mines it recursively to find all stable periodic-frequent itemsets. The dictionary holds the information pertaining to itemsets and their temporal occurrences in a database. Experimental results on six databases demonstrate that the proposed algorithm is computationally efficient and scalable.
first_indexed 2024-04-10T15:07:20Z
format Article
id doaj.art-503677ea9ef34b48a0738b0b8f6940ac
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-04-10T15:07:20Z
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-503677ea9ef34b48a0738b0b8f6940ac2023-02-15T00:00:35ZengIEEEIEEE Access2169-35362023-01-0111125041252410.1109/ACCESS.2023.324131310034746Finding Stable Periodic-Frequent Itemsets in Big Columnar DatabasesHong N. Dao0https://orcid.org/0000-0002-2693-2207Penugonda Ravikumar1https://orcid.org/0000-0001-9124-9781Palla Likhitha2https://orcid.org/0000-0003-3032-9061Uday Kiran Rage3https://orcid.org/0000-0002-5417-0289Yutaka Watanobe4https://orcid.org/0000-0002-0030-3859Incheon Paik5https://orcid.org/0000-0002-7554-8180Department of Computer Science and Engineering, The University of Aizu, Fukushima, Aizuwakamatsu, JapanIIIT-Idupulapaya, RGUKT, Andhra Pradesh, Nuzividu, IndiaNational Institute of Information and Communications Technology, Tokyo, JapanInstitute of Industrial Science, The University of Tokyo, Tokyo, JapanDepartment of Computer Science and Engineering, The University of Aizu, Fukushima, Aizuwakamatsu, JapanDepartment of Computer Science and Engineering, The University of Aizu, Fukushima, Aizuwakamatsu, JapanStable periodic-frequent itemset mining is essential in big data analytics with many real-world applications. It involves extracting all itemsets exhibiting stable periodic behaviors in a temporal database. Most previous studies focused on finding these itemsets in row (temporal) databases and disregarded the occurrences of these itemsets in columnar databases. Furthermore, the naïve approach of transforming a columnar database into a row database and then applying the existing algorithms to find interesting itemsets is not practicable due to computational reasons. With this motivation, this paper proposes a framework to discover stable periodic-frequent itemsets in columnar databases. Our framework employs a novel depth-first search algorithm that compresses a given columnar database into a unified dictionary and mines it recursively to find all stable periodic-frequent itemsets. The dictionary holds the information pertaining to itemsets and their temporal occurrences in a database. Experimental results on six databases demonstrate that the proposed algorithm is computationally efficient and scalable.https://ieeexplore.ieee.org/document/10034746/Columnar databasesstable periodic-frequent itemsetitemset mining
spellingShingle Hong N. Dao
Penugonda Ravikumar
Palla Likhitha
Uday Kiran Rage
Yutaka Watanobe
Incheon Paik
Finding Stable Periodic-Frequent Itemsets in Big Columnar Databases
IEEE Access
Columnar databases
stable periodic-frequent itemset
itemset mining
title Finding Stable Periodic-Frequent Itemsets in Big Columnar Databases
title_full Finding Stable Periodic-Frequent Itemsets in Big Columnar Databases
title_fullStr Finding Stable Periodic-Frequent Itemsets in Big Columnar Databases
title_full_unstemmed Finding Stable Periodic-Frequent Itemsets in Big Columnar Databases
title_short Finding Stable Periodic-Frequent Itemsets in Big Columnar Databases
title_sort finding stable periodic frequent itemsets in big columnar databases
topic Columnar databases
stable periodic-frequent itemset
itemset mining
url https://ieeexplore.ieee.org/document/10034746/
work_keys_str_mv AT hongndao findingstableperiodicfrequentitemsetsinbigcolumnardatabases
AT penugondaravikumar findingstableperiodicfrequentitemsetsinbigcolumnardatabases
AT pallalikhitha findingstableperiodicfrequentitemsetsinbigcolumnardatabases
AT udaykiranrage findingstableperiodicfrequentitemsetsinbigcolumnardatabases
AT yutakawatanobe findingstableperiodicfrequentitemsetsinbigcolumnardatabases
AT incheonpaik findingstableperiodicfrequentitemsetsinbigcolumnardatabases