Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens
Antibiotic-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) has become a serious threat to public health worldwide. Cationic α-helical antimicrobial peptides (CαAMPs) have attrac...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-07-01
|
Series: | Frontiers in Microbiology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fmicb.2021.684591/full |
_version_ | 1818404954197458944 |
---|---|
author | Xudong Luo Xudong Luo Xiangdong Ye Xiangdong Ye Li Ding Li Ding Wen Zhu Pengcheng Yi Zhiwen Zhao Huanhuan Gao Zhan Shu Shan Li Ming Sang Jue Wang Weihua Zhong Zongyun Chen Zongyun Chen |
author_facet | Xudong Luo Xudong Luo Xiangdong Ye Xiangdong Ye Li Ding Li Ding Wen Zhu Pengcheng Yi Zhiwen Zhao Huanhuan Gao Zhan Shu Shan Li Ming Sang Jue Wang Weihua Zhong Zongyun Chen Zongyun Chen |
author_sort | Xudong Luo |
collection | DOAJ |
description | Antibiotic-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) has become a serious threat to public health worldwide. Cationic α-helical antimicrobial peptides (CαAMPs) have attracted much attention as promising solutions in post-antibiotic era. However, strong hemolytic activity and in vivo inefficacy have hindered their pharmaceutical development. Here, we attempt to address these obstacles by investigating BmKn2 and BmKn2-7, two scorpion-derived CαAMPs with the same hydrophobic face and a distinct hydrophilic face. Through structural comparison, mutant design and functional analyses, we found that while keeping the hydrophobic face unchanged, increasing the number of alkaline residues (i.e., Lys + Arg residues) on the hydrophilic face of BmKn2 reduces the hemolytic activity and broadens the antimicrobial spectrum. Strikingly, when keeping the total number of alkaline residues constant, increasing the number of Lys residues on the hydrophilic face of BmKn2-7 significantly reduces the hemolytic activity but does not influence the antimicrobial activity. BmKn2-7K, a mutant of BmKn2-7 in which all of the Arg residues on the hydrophilic face were replaced with Lys, showed the lowest hemolytic activity and potent antimicrobial activity against antibiotic-resistant ESKAPE pathogens. Moreover, in vivo experiments indicate that BmKn2-7K displays potent antimicrobial efficacy against both the penicillin-resistant S. aureus and the carbapenem- and multidrug-resistant A. baumannii, and is non-toxic at the antimicrobial dosages. Taken together, our work highlights the significant functional disparity of Lys vs Arg in the scorpion-derived antimicrobial peptide BmKn2-7, and provides a promising lead molecule for drug development against ESKAPE pathogens. |
first_indexed | 2024-12-14T08:48:21Z |
format | Article |
id | doaj.art-503cd555b07f408a8aabbcf053d5d4b0 |
institution | Directory Open Access Journal |
issn | 1664-302X |
language | English |
last_indexed | 2024-12-14T08:48:21Z |
publishDate | 2021-07-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Microbiology |
spelling | doaj.art-503cd555b07f408a8aabbcf053d5d4b02022-12-21T23:09:06ZengFrontiers Media S.A.Frontiers in Microbiology1664-302X2021-07-011210.3389/fmicb.2021.684591684591Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE PathogensXudong Luo0Xudong Luo1Xiangdong Ye2Xiangdong Ye3Li Ding4Li Ding5Wen Zhu6Pengcheng Yi7Zhiwen Zhao8Huanhuan Gao9Zhan Shu10Shan Li11Ming Sang12Jue Wang13Weihua Zhong14Zongyun Chen15Zongyun Chen16Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, ChinaHubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, ChinaInstitute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, ChinaHubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, ChinaInstitute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, ChinaDepartment of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan, ChinaInstitute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, ChinaInstitute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, ChinaInstitute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, ChinaInstitute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, ChinaInstitute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, ChinaInstitute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, ChinaCentral Laboratory of Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Shiyan, ChinaInstitute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, ChinaDepartment of Rehabilitation Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, ChinaInstitute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, ChinaHubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, ChinaAntibiotic-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) has become a serious threat to public health worldwide. Cationic α-helical antimicrobial peptides (CαAMPs) have attracted much attention as promising solutions in post-antibiotic era. However, strong hemolytic activity and in vivo inefficacy have hindered their pharmaceutical development. Here, we attempt to address these obstacles by investigating BmKn2 and BmKn2-7, two scorpion-derived CαAMPs with the same hydrophobic face and a distinct hydrophilic face. Through structural comparison, mutant design and functional analyses, we found that while keeping the hydrophobic face unchanged, increasing the number of alkaline residues (i.e., Lys + Arg residues) on the hydrophilic face of BmKn2 reduces the hemolytic activity and broadens the antimicrobial spectrum. Strikingly, when keeping the total number of alkaline residues constant, increasing the number of Lys residues on the hydrophilic face of BmKn2-7 significantly reduces the hemolytic activity but does not influence the antimicrobial activity. BmKn2-7K, a mutant of BmKn2-7 in which all of the Arg residues on the hydrophilic face were replaced with Lys, showed the lowest hemolytic activity and potent antimicrobial activity against antibiotic-resistant ESKAPE pathogens. Moreover, in vivo experiments indicate that BmKn2-7K displays potent antimicrobial efficacy against both the penicillin-resistant S. aureus and the carbapenem- and multidrug-resistant A. baumannii, and is non-toxic at the antimicrobial dosages. Taken together, our work highlights the significant functional disparity of Lys vs Arg in the scorpion-derived antimicrobial peptide BmKn2-7, and provides a promising lead molecule for drug development against ESKAPE pathogens.https://www.frontiersin.org/articles/10.3389/fmicb.2021.684591/fullESKAPE pathogensantibiotic resistancecationic α-helical antimicrobial peptidehydrophilic facelysine vs argininehemolytic activity |
spellingShingle | Xudong Luo Xudong Luo Xiangdong Ye Xiangdong Ye Li Ding Li Ding Wen Zhu Pengcheng Yi Zhiwen Zhao Huanhuan Gao Zhan Shu Shan Li Ming Sang Jue Wang Weihua Zhong Zongyun Chen Zongyun Chen Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens Frontiers in Microbiology ESKAPE pathogens antibiotic resistance cationic α-helical antimicrobial peptide hydrophilic face lysine vs arginine hemolytic activity |
title | Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens |
title_full | Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens |
title_fullStr | Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens |
title_full_unstemmed | Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens |
title_short | Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens |
title_sort | fine tuning of alkaline residues on the hydrophilic face provides a non toxic cationic α helical antimicrobial peptide against antibiotic resistant eskape pathogens |
topic | ESKAPE pathogens antibiotic resistance cationic α-helical antimicrobial peptide hydrophilic face lysine vs arginine hemolytic activity |
url | https://www.frontiersin.org/articles/10.3389/fmicb.2021.684591/full |
work_keys_str_mv | AT xudongluo finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT xudongluo finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT xiangdongye finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT xiangdongye finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT liding finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT liding finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT wenzhu finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT pengchengyi finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT zhiwenzhao finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT huanhuangao finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT zhanshu finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT shanli finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT mingsang finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT juewang finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT weihuazhong finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT zongyunchen finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens AT zongyunchen finetuningofalkalineresiduesonthehydrophilicfaceprovidesanontoxiccationicahelicalantimicrobialpeptideagainstantibioticresistanteskapepathogens |