High-Dimensional Consistencies of KOO Methods for the Selection of Variables in Multivariate Linear Regression Models with Covariance Structures

In this paper, we consider the high-dimensional consistencies of KOO methods for selecting response variables in multivariate linear regression with covariance structures. Here, the covariance structures are considered as (1) independent covariance structure with the same variance, (2) independent c...

Full description

Bibliographic Details
Main Authors: Yasunori Fujikoshi, Tetsuro Sakurai
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/3/671
_version_ 1797623824771973120
author Yasunori Fujikoshi
Tetsuro Sakurai
author_facet Yasunori Fujikoshi
Tetsuro Sakurai
author_sort Yasunori Fujikoshi
collection DOAJ
description In this paper, we consider the high-dimensional consistencies of KOO methods for selecting response variables in multivariate linear regression with covariance structures. Here, the covariance structures are considered as (1) independent covariance structure with the same variance, (2) independent covariance structure with different variances, and (3) uniform covariance structure. A sufficient condition for model selection consistency is obtained using a KOO method under a high-dimensional asymptotic framework, such that sample size <i>n</i>, the number <i>p</i> of response variables, and the number <i>k</i> of explanatory variables are large, as in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>/</mo><mi>n</mi><mo>→</mo><msub><mi>c</mi><mn>1</mn></msub><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>/</mo><mi>n</mi><mo>→</mo><msub><mi>c</mi><mn>2</mn></msub><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>c</mi><mn>1</mn></msub><mo>+</mo><msub><mi>c</mi><mn>2</mn></msub><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-11T09:34:14Z
format Article
id doaj.art-503e0612fbc24bd08b8da965df9ca6bd
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T09:34:14Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-503e0612fbc24bd08b8da965df9ca6bd2023-11-16T17:22:55ZengMDPI AGMathematics2227-73902023-01-0111367110.3390/math11030671High-Dimensional Consistencies of KOO Methods for the Selection of Variables in Multivariate Linear Regression Models with Covariance StructuresYasunori Fujikoshi0Tetsuro Sakurai1Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-2 Kagamiyama, Hiroshima 739-8626, JapanSchool of General and Management Studies, Suwa University of Science, 5000-1 Toyohira, Chino 391-0292, JapanIn this paper, we consider the high-dimensional consistencies of KOO methods for selecting response variables in multivariate linear regression with covariance structures. Here, the covariance structures are considered as (1) independent covariance structure with the same variance, (2) independent covariance structure with different variances, and (3) uniform covariance structure. A sufficient condition for model selection consistency is obtained using a KOO method under a high-dimensional asymptotic framework, such that sample size <i>n</i>, the number <i>p</i> of response variables, and the number <i>k</i> of explanatory variables are large, as in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>/</mo><mi>n</mi><mo>→</mo><msub><mi>c</mi><mn>1</mn></msub><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>/</mo><mi>n</mi><mo>→</mo><msub><mi>c</mi><mn>2</mn></msub><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>c</mi><mn>1</mn></msub><mo>+</mo><msub><mi>c</mi><mn>2</mn></msub><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/11/3/671consistency propertycovariance structureshigh-dimensional asymptotic frameworkKOO methodsmultivariate linear regression
spellingShingle Yasunori Fujikoshi
Tetsuro Sakurai
High-Dimensional Consistencies of KOO Methods for the Selection of Variables in Multivariate Linear Regression Models with Covariance Structures
Mathematics
consistency property
covariance structures
high-dimensional asymptotic framework
KOO methods
multivariate linear regression
title High-Dimensional Consistencies of KOO Methods for the Selection of Variables in Multivariate Linear Regression Models with Covariance Structures
title_full High-Dimensional Consistencies of KOO Methods for the Selection of Variables in Multivariate Linear Regression Models with Covariance Structures
title_fullStr High-Dimensional Consistencies of KOO Methods for the Selection of Variables in Multivariate Linear Regression Models with Covariance Structures
title_full_unstemmed High-Dimensional Consistencies of KOO Methods for the Selection of Variables in Multivariate Linear Regression Models with Covariance Structures
title_short High-Dimensional Consistencies of KOO Methods for the Selection of Variables in Multivariate Linear Regression Models with Covariance Structures
title_sort high dimensional consistencies of koo methods for the selection of variables in multivariate linear regression models with covariance structures
topic consistency property
covariance structures
high-dimensional asymptotic framework
KOO methods
multivariate linear regression
url https://www.mdpi.com/2227-7390/11/3/671
work_keys_str_mv AT yasunorifujikoshi highdimensionalconsistenciesofkoomethodsfortheselectionofvariablesinmultivariatelinearregressionmodelswithcovariancestructures
AT tetsurosakurai highdimensionalconsistenciesofkoomethodsfortheselectionofvariablesinmultivariatelinearregressionmodelswithcovariancestructures