LPS-Net: Lightweight Parallel Strategy Network for Underwater Image Enhancement

Underwater images are frequently subject to color distortion and loss of details. However, previous enhancement methods did not tackle these mixed degradations by dividing them into sub-problems that could be effectively addressed. Moreover, the parameters and computations required for these methods...

Full description

Bibliographic Details
Main Authors: Jingxia Jiang, Peiyun Huang, Lihan Tong, Junjie Yin, Erkang Chen
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/16/9419
Description
Summary:Underwater images are frequently subject to color distortion and loss of details. However, previous enhancement methods did not tackle these mixed degradations by dividing them into sub-problems that could be effectively addressed. Moreover, the parameters and computations required for these methods are usually costly for underwater equipment, which has limited power supply, processing capabilities, and memory capacity. To address these challenges, this work proposes a Lightweight Parallel Strategy Network (LPS-Net). Firstly, a Dual-Attention Enhancement Block and a Mirror Large Receptiveness Block are introduced to, respectively, enhance the color and restore details in degraded images. Secondly, we employed these blocks on parallel branches at each stage of LPS-Net, with the goal of achieving effective image color and detail rendering simultaneously. Thirdly, a Gated Fusion Unit is proposed to merge features from different branches at each stage. Finally, the network utilizes four stages of parallel enhancement, achieving a balanced trade-off between performance and parameters. Extensive experiments demonstrated that LPS-Net achieves optimal color enhancement and superior detail restoration in terms of visual quality. Furthermore, it attains state-of-the-art underwater image enhancement performance on the evaluation metrics, while using only 80.12 k parameters.
ISSN:2076-3417