Summary: | A precise determination of the mass diffusion coefficient and the mass Biot number is indispensable for deeper mass transfer analysis that can enable finding optimum conditions for conducting a considered process. The aim of the article is to estimate the mass diffusion coefficient and the mass Biot number by applying nondominated sorting genetic algorithm (NSGA) II genetic algorithms. The method is used in drying. The maximization of coefficient of correlation (R) and simultaneous minimization of mean absolute error (MAE) and root mean square error (RMSE) between the model and experimental data were taken into account. The Biot number and moisture diffusion coefficient can be determined using the following equations: <i>Bi</i> = 0.7647141 + 10.1689977<i>s</i> − 0.003400086<i>T</i> + 948.715758<i>s</i><sup>2</sup> + 0.000024316<i>T</i><sup>2</sup> − 0.12478256<i>sT</i>, <i>D</i> = 1.27547936∙10<sup>−7</sup> − 2.3808∙10<sup>−5</sup>s − 5.08365633∙10<sup>−9</sup><i>T</i> + 0.0030005179<i>s</i><sup>2</sup> + 4.266495∙10<sup>−11</sup><i>T</i><sup>2</sup> + 8.33633∙10<sup>−7</sup><i>sT</i> or <i>Bi</i> = 0.764714 + 10.1689091<i>s</i> − 0.003400089<i>T</i> + 948.715738<i>s</i><sup>2</sup> + 0.000024316<i>T</i><sup>2</sup> − 0.12478252<i>sT</i>, <i>D</i> = 1.27547948∙10<sup>−7</sup> − 2.3806∙10<sup>−5</sup><i>s</i> − 5.08365753∙10<sup>−9</sup><i>T</i> + 0.0030005175<i>s</i><sup>2</sup> + 4.266493∙10<sup>−11</sup><i>T</i><sup>2</sup> + 8.336334∙10<sup>−7</sup><i>sT</i>. The results of statistical analysis for the Biot number and moisture diffusion coefficient equations were as follows: R = 0.9905672, MAE = 0.0406375, RMSE = 0.050252 and R = 0.9905611, MAE = 0.0406403 and RMSE = 0.050273, respectively.
|