Evaluation of the Mass Diffusion Coefficient and Mass Biot Number Using a Nondominated Sorting Genetic Algorithm

A precise determination of the mass diffusion coefficient and the mass Biot number is indispensable for deeper mass transfer analysis that can enable finding optimum conditions for conducting a considered process. The aim of the article is to estimate the mass diffusion coefficient and the mass Biot...

Full description

Bibliographic Details
Main Authors: Radosław Winiczenko, Krzysztof Górnicki, Agnieszka Kaleta
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/2/260
_version_ 1811264142765457408
author Radosław Winiczenko
Krzysztof Górnicki
Agnieszka Kaleta
author_facet Radosław Winiczenko
Krzysztof Górnicki
Agnieszka Kaleta
author_sort Radosław Winiczenko
collection DOAJ
description A precise determination of the mass diffusion coefficient and the mass Biot number is indispensable for deeper mass transfer analysis that can enable finding optimum conditions for conducting a considered process. The aim of the article is to estimate the mass diffusion coefficient and the mass Biot number by applying nondominated sorting genetic algorithm (NSGA) II genetic algorithms. The method is used in drying. The maximization of coefficient of correlation (R) and simultaneous minimization of mean absolute error (MAE) and root mean square error (RMSE) between the model and experimental data were taken into account. The Biot number and moisture diffusion coefficient can be determined using the following equations: <i>Bi</i> = 0.7647141 + 10.1689977<i>s</i> &#8722; 0.003400086<i>T</i> + 948.715758<i>s</i><sup>2</sup> + 0.000024316<i>T</i><sup>2</sup> &#8722; 0.12478256<i>sT</i>, <i>D</i> = 1.27547936∙10<sup>&#8722;7</sup> &#8722; 2.3808∙10<sup>&#8722;5</sup>s &#8722; 5.08365633∙10<sup>&#8722;9</sup><i>T</i> + 0.0030005179<i>s</i><sup>2</sup> + 4.266495∙10<sup>&#8722;11</sup><i>T</i><sup>2</sup> + 8.33633∙10<sup>&#8722;7</sup><i>sT</i> or <i>Bi</i> = 0.764714 + 10.1689091<i>s</i> &#8722; 0.003400089<i>T</i> + 948.715738<i>s</i><sup>2</sup> + 0.000024316<i>T</i><sup>2</sup> &#8722; 0.12478252<i>sT</i>, <i>D</i> = 1.27547948∙10<sup>&#8722;7</sup> &#8722; 2.3806∙10<sup>&#8722;5</sup><i>s</i> &#8722; 5.08365753∙10<sup>&#8722;9</sup><i>T</i> + 0.0030005175<i>s</i><sup>2</sup> + 4.266493∙10<sup>&#8722;11</sup><i>T</i><sup>2</sup> + 8.336334∙10<sup>&#8722;7</sup><i>sT</i>. The results of statistical analysis for the Biot number and moisture diffusion coefficient equations were as follows: R = 0.9905672, MAE = 0.0406375, RMSE = 0.050252 and R = 0.9905611, MAE = 0.0406403 and RMSE = 0.050273, respectively.
first_indexed 2024-04-12T19:57:33Z
format Article
id doaj.art-50509dbe76b84df2a2a3577361c4eafd
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-04-12T19:57:33Z
publishDate 2020-02-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-50509dbe76b84df2a2a3577361c4eafd2022-12-22T03:18:37ZengMDPI AGSymmetry2073-89942020-02-0112226010.3390/sym12020260sym12020260Evaluation of the Mass Diffusion Coefficient and Mass Biot Number Using a Nondominated Sorting Genetic AlgorithmRadosław Winiczenko0Krzysztof Górnicki1Agnieszka Kaleta2Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 164 St., 02-787 Warsaw, PolandInstitute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 164 St., 02-787 Warsaw, PolandInstitute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 164 St., 02-787 Warsaw, PolandA precise determination of the mass diffusion coefficient and the mass Biot number is indispensable for deeper mass transfer analysis that can enable finding optimum conditions for conducting a considered process. The aim of the article is to estimate the mass diffusion coefficient and the mass Biot number by applying nondominated sorting genetic algorithm (NSGA) II genetic algorithms. The method is used in drying. The maximization of coefficient of correlation (R) and simultaneous minimization of mean absolute error (MAE) and root mean square error (RMSE) between the model and experimental data were taken into account. The Biot number and moisture diffusion coefficient can be determined using the following equations: <i>Bi</i> = 0.7647141 + 10.1689977<i>s</i> &#8722; 0.003400086<i>T</i> + 948.715758<i>s</i><sup>2</sup> + 0.000024316<i>T</i><sup>2</sup> &#8722; 0.12478256<i>sT</i>, <i>D</i> = 1.27547936∙10<sup>&#8722;7</sup> &#8722; 2.3808∙10<sup>&#8722;5</sup>s &#8722; 5.08365633∙10<sup>&#8722;9</sup><i>T</i> + 0.0030005179<i>s</i><sup>2</sup> + 4.266495∙10<sup>&#8722;11</sup><i>T</i><sup>2</sup> + 8.33633∙10<sup>&#8722;7</sup><i>sT</i> or <i>Bi</i> = 0.764714 + 10.1689091<i>s</i> &#8722; 0.003400089<i>T</i> + 948.715738<i>s</i><sup>2</sup> + 0.000024316<i>T</i><sup>2</sup> &#8722; 0.12478252<i>sT</i>, <i>D</i> = 1.27547948∙10<sup>&#8722;7</sup> &#8722; 2.3806∙10<sup>&#8722;5</sup><i>s</i> &#8722; 5.08365753∙10<sup>&#8722;9</sup><i>T</i> + 0.0030005175<i>s</i><sup>2</sup> + 4.266493∙10<sup>&#8722;11</sup><i>T</i><sup>2</sup> + 8.336334∙10<sup>&#8722;7</sup><i>sT</i>. The results of statistical analysis for the Biot number and moisture diffusion coefficient equations were as follows: R = 0.9905672, MAE = 0.0406375, RMSE = 0.050252 and R = 0.9905611, MAE = 0.0406403 and RMSE = 0.050273, respectively.https://www.mdpi.com/2073-8994/12/2/260mass biot numberdiffusion coefficientmulti-objective genetic algorithm
spellingShingle Radosław Winiczenko
Krzysztof Górnicki
Agnieszka Kaleta
Evaluation of the Mass Diffusion Coefficient and Mass Biot Number Using a Nondominated Sorting Genetic Algorithm
Symmetry
mass biot number
diffusion coefficient
multi-objective genetic algorithm
title Evaluation of the Mass Diffusion Coefficient and Mass Biot Number Using a Nondominated Sorting Genetic Algorithm
title_full Evaluation of the Mass Diffusion Coefficient and Mass Biot Number Using a Nondominated Sorting Genetic Algorithm
title_fullStr Evaluation of the Mass Diffusion Coefficient and Mass Biot Number Using a Nondominated Sorting Genetic Algorithm
title_full_unstemmed Evaluation of the Mass Diffusion Coefficient and Mass Biot Number Using a Nondominated Sorting Genetic Algorithm
title_short Evaluation of the Mass Diffusion Coefficient and Mass Biot Number Using a Nondominated Sorting Genetic Algorithm
title_sort evaluation of the mass diffusion coefficient and mass biot number using a nondominated sorting genetic algorithm
topic mass biot number
diffusion coefficient
multi-objective genetic algorithm
url https://www.mdpi.com/2073-8994/12/2/260
work_keys_str_mv AT radosławwiniczenko evaluationofthemassdiffusioncoefficientandmassbiotnumberusinganondominatedsortinggeneticalgorithm
AT krzysztofgornicki evaluationofthemassdiffusioncoefficientandmassbiotnumberusinganondominatedsortinggeneticalgorithm
AT agnieszkakaleta evaluationofthemassdiffusioncoefficientandmassbiotnumberusinganondominatedsortinggeneticalgorithm