The Decay of Energy and Scalar Variance in Axisymmetric Turbulence

We review the recent progress in our understanding of the large scales in homogeneous (but anisotropic) turbulence. We focus on turbulence which emerges from Saffman-like initial conditions, in which the vortices possess a finite linear impulse. Such turbulence supports long-range velocity correlati...

Full description

Bibliographic Details
Main Author: Peter A. Davidson
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/14/6/1019
_version_ 1797596162026373120
author Peter A. Davidson
author_facet Peter A. Davidson
author_sort Peter A. Davidson
collection DOAJ
description We review the recent progress in our understanding of the large scales in homogeneous (but anisotropic) turbulence. We focus on turbulence which emerges from Saffman-like initial conditions, in which the vortices possess a finite linear impulse. Such turbulence supports long-range velocity correlations of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="⟩" open="⟨"><mrow><msub><mi>u</mi><mi>i</mi></msub><msub><msup><mi>u</mi><mo>′</mo></msup><mi>j</mi></msub></mrow></mfenced><mo>=</mo><mi>O</mi><mo stretchy="false">(</mo><msup><mi>r</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, where <b>u</b> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle mathvariant="bold" mathsize="normal"><msup><mi>u</mi><mo>′</mo></msup></mstyle></semantics></math></inline-formula> are separated by a distance <i>r</i>, and these long-range interactions dominate the dynamics of large eddies. We show that, for axisymmetric turbulence, the energy and integral scales evolve as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>u</mi><mo>⊥</mo><mn>2</mn></msubsup><mo>~</mo><msubsup><mi>u</mi><mrow><mo>/</mo><mo>/</mo></mrow><mn>2</mn></msubsup><mo>~</mo><msup><mi>t</mi><mrow><mo>−</mo><mn>6</mn><mo>/</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="script">l</mi><mo>⊥</mo><mrow></mrow></msubsup><mo>~</mo><msubsup><mi mathvariant="script">l</mi><mrow><mo>/</mo><mo>/</mo></mrow><mrow></mrow></msubsup><mo>~</mo><msup><mi>t</mi><mrow><mn>2</mn><mo>/</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>⊥</mo></semantics></math></inline-formula> and // indicate directions that are perpendicular and parallel to the symmetry axis, respectively. These predictions are consistent with the evidence of direct numerical simulations. Similar results are obtained for the passive scalar variance, where we find that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="⟩" open="⟨"><mrow><msup><mi>θ</mi><mn>2</mn></msup></mrow></mfenced><mo>~</mo><msup><mi>t</mi><mrow><mo>−</mo><mn>6</mn><mo>/</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula>. The primary point of novelty in our discussion of passive scalar decay is that it is based in real (rather than spectral) space, making use of an integral invariant which is a generalization of the isotropic Corrsin integral.
first_indexed 2024-03-11T02:46:41Z
format Article
id doaj.art-505c14e516a9402c91336395d61350d6
institution Directory Open Access Journal
issn 2073-4433
language English
last_indexed 2024-03-11T02:46:41Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Atmosphere
spelling doaj.art-505c14e516a9402c91336395d61350d62023-11-18T09:15:05ZengMDPI AGAtmosphere2073-44332023-06-01146101910.3390/atmos14061019The Decay of Energy and Scalar Variance in Axisymmetric TurbulencePeter A. Davidson0Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UKWe review the recent progress in our understanding of the large scales in homogeneous (but anisotropic) turbulence. We focus on turbulence which emerges from Saffman-like initial conditions, in which the vortices possess a finite linear impulse. Such turbulence supports long-range velocity correlations of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="⟩" open="⟨"><mrow><msub><mi>u</mi><mi>i</mi></msub><msub><msup><mi>u</mi><mo>′</mo></msup><mi>j</mi></msub></mrow></mfenced><mo>=</mo><mi>O</mi><mo stretchy="false">(</mo><msup><mi>r</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, where <b>u</b> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle mathvariant="bold" mathsize="normal"><msup><mi>u</mi><mo>′</mo></msup></mstyle></semantics></math></inline-formula> are separated by a distance <i>r</i>, and these long-range interactions dominate the dynamics of large eddies. We show that, for axisymmetric turbulence, the energy and integral scales evolve as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>u</mi><mo>⊥</mo><mn>2</mn></msubsup><mo>~</mo><msubsup><mi>u</mi><mrow><mo>/</mo><mo>/</mo></mrow><mn>2</mn></msubsup><mo>~</mo><msup><mi>t</mi><mrow><mo>−</mo><mn>6</mn><mo>/</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi mathvariant="script">l</mi><mo>⊥</mo><mrow></mrow></msubsup><mo>~</mo><msubsup><mi mathvariant="script">l</mi><mrow><mo>/</mo><mo>/</mo></mrow><mrow></mrow></msubsup><mo>~</mo><msup><mi>t</mi><mrow><mn>2</mn><mo>/</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>⊥</mo></semantics></math></inline-formula> and // indicate directions that are perpendicular and parallel to the symmetry axis, respectively. These predictions are consistent with the evidence of direct numerical simulations. Similar results are obtained for the passive scalar variance, where we find that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfenced close="⟩" open="⟨"><mrow><msup><mi>θ</mi><mn>2</mn></msup></mrow></mfenced><mo>~</mo><msup><mi>t</mi><mrow><mo>−</mo><mn>6</mn><mo>/</mo><mn>5</mn></mrow></msup></mrow></semantics></math></inline-formula>. The primary point of novelty in our discussion of passive scalar decay is that it is based in real (rather than spectral) space, making use of an integral invariant which is a generalization of the isotropic Corrsin integral.https://www.mdpi.com/2073-4433/14/6/1019scalar varianceSaffman turbulenceaxisymmetric turbulence
spellingShingle Peter A. Davidson
The Decay of Energy and Scalar Variance in Axisymmetric Turbulence
Atmosphere
scalar variance
Saffman turbulence
axisymmetric turbulence
title The Decay of Energy and Scalar Variance in Axisymmetric Turbulence
title_full The Decay of Energy and Scalar Variance in Axisymmetric Turbulence
title_fullStr The Decay of Energy and Scalar Variance in Axisymmetric Turbulence
title_full_unstemmed The Decay of Energy and Scalar Variance in Axisymmetric Turbulence
title_short The Decay of Energy and Scalar Variance in Axisymmetric Turbulence
title_sort decay of energy and scalar variance in axisymmetric turbulence
topic scalar variance
Saffman turbulence
axisymmetric turbulence
url https://www.mdpi.com/2073-4433/14/6/1019
work_keys_str_mv AT peteradavidson thedecayofenergyandscalarvarianceinaxisymmetricturbulence
AT peteradavidson decayofenergyandscalarvarianceinaxisymmetricturbulence