The Clinical and Genotypic Spectrum of Scoliosis in Multiple Pterygium Syndrome: A Case Series on 12 Children

Background: Multiple pterygium syndrome (MPS) is a genetically heterogeneous rare form of arthrogryposis multiplex congenita characterized by joint contractures and webbing or pterygia, as well as distinctive facial features related to diminished fetal movement. It is divided into prenatally lethal...

Full description

Bibliographic Details
Main Authors: Noémi Dahan-Oliel, Klaus Dieterich, Frank Rauch, Ghalib Bardai, Taylor N. Blondell, Anxhela Gjyshi Gustafson, Reggie Hamdy, Xenia Latypova, Kamran Shazand, Philip F. Giampietro, Harold van Bosse
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Genes
Subjects:
Online Access:https://www.mdpi.com/2073-4425/12/8/1220
Description
Summary:Background: Multiple pterygium syndrome (MPS) is a genetically heterogeneous rare form of arthrogryposis multiplex congenita characterized by joint contractures and webbing or pterygia, as well as distinctive facial features related to diminished fetal movement. It is divided into prenatally lethal (LMPS, MIM253290) and nonlethal (Escobar variant MPS, MIM 265000) types. Developmental spine deformities are common, may present early and progress rapidly, requiring regular fo llow-up and orthopedic management. Methods: Retrospective chart review and prospective data collection were conducted at three hospital centers. Molecular diagnosis was confirmed with whole exome or whole genome sequencing. Results: This case series describes the clinical features and scoliosis treatment on 12 patients from 11 unrelated families. A molecular diagnosis was confirmed in seven; two with <i>MYH3</i> variants and five with <i>CHRNG</i>. Scoliosis was present in all but our youngest patient. The remaining 11 patients spanned the spectrum between mild (curve ≤ 25°) and malignant scoliosis (≥50° curve before 4 years of age); the two patients with <i>MYH3</i> mutations presented with malignant scoliosis. Bracing and serial spine casting appear to be beneficial for a few years; non-fusion spinal instrumentation may be needed to modulate more severe curves during growth and spontaneous spine fusions may occur in those cases. Conclusions: Molecular diagnosis and careful monitoring of the spine is needed in children with MPS.
ISSN:2073-4425