Summary: | The impact of Pulsed Electric Field (PEF) processing pre-treatment on the texture and kinetics of in vitro starch digestibility of French fries made from two potato cultivars (Solanum tuberosum L.) containing dry matter content ranging from 19 to 22% was investigated. Whole and steam-peeled potato tubers were treated with a pilot scale PEF unit (electric field strength of 1.1 and 1.9 kV/cm with energy input <10 kJ/kg or ∼50 kJ/kg). This trial was carried out in a commercial French-fry plant using an industrial scale cutter, blancher, fryer and blast-freezer to prepare the frozen par-fried French fry samples. After subsequent final batch frying of the frozen fries, at 180 °C for 3 min to mimic the typical preparation practice at restaurant, retail and household, the outer crust of the fries produced from PEF-treated potatoes was significantly harder (9.4–16.3 N) than crust produced from untreated potatoes (6.9–8.5 N). High intensity (1.9 kV/cm with energy input ∼50 kJ/kg) PEF processing was found to cause defects (i.e. hollowness in the internal core) in the fries. A fractional conversion model was a good fit for the starch digestion kinetics of all French fry samples during the small intestinal phase (based on standardised INFOGEST static in vitro digestion assay). A lower % of total starch hydrolysis was predicted for French fries produced from high dry matter (>21%) tubers pretreated with PEF at electric field strength of 1.9 kV/cm. The findings generated in this study demonstrate PEF pretreatment may influence the texture of French fries and the extent of starch digestion that occurs.
|