Odd Harmonious Labeling of Some Classes of Graphs

A graph $G(p,q)$ is said to be odd harmonious if there exists an injection $f: V(G)\rightarrow\left\{0, 1, 2,\cdots,2q-1\right\}$ such that the induced function $f^{*}: E(G)\rightarrow\left\{1, 3,\cdots,2q-1\right\}$ defined by $f^{*}(uv) = f(u)+ f(v)$ is a bijection. In this paper we prove that $T_...

Full description

Bibliographic Details
Main Authors: P. Jeyanthi, S. Philo
Format: Article
Language:English
Published: Universidad de La Frontera 2020-12-01
Series:Cubo
Subjects:
Online Access:http://revistas.ufro.cl/ojs/index.php/cubo/article/view/2466/2023
_version_ 1818412528960536576
author P. Jeyanthi
S. Philo
author_facet P. Jeyanthi
S. Philo
author_sort P. Jeyanthi
collection DOAJ
description A graph $G(p,q)$ is said to be odd harmonious if there exists an injection $f: V(G)\rightarrow\left\{0, 1, 2,\cdots,2q-1\right\}$ such that the induced function $f^{*}: E(G)\rightarrow\left\{1, 3,\cdots,2q-1\right\}$ defined by $f^{*}(uv) = f(u)+ f(v)$ is a bijection. In this paper we prove that $T_p$- tree, $T\hat\circ P_m$, $T\hat\circ 2P_m$, regular bamboo tree, $C_n\hat\circ P_m$, $C_n\hat\circ 2P_m$ and subdivided grid graphs are odd harmonious.
first_indexed 2024-12-14T10:48:45Z
format Article
id doaj.art-507421582834463395fc1f0969807f39
institution Directory Open Access Journal
issn 0716-7776
0719-0646
language English
last_indexed 2024-12-14T10:48:45Z
publishDate 2020-12-01
publisher Universidad de La Frontera
record_format Article
series Cubo
spelling doaj.art-507421582834463395fc1f0969807f392022-12-21T23:05:20ZengUniversidad de La FronteraCubo0716-77760719-06462020-12-0122329931410.4067/S0719-06462020000300299Odd Harmonious Labeling of Some Classes of GraphsP. Jeyanthi0https://orcid.org/0000-0003-4349-164XS. Philo1Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur - 628 215, Tamil Nadu, India.Department of Mathematics, St. Xavier’s College, Palayamkottai, Tirunelveli -627002, Tamilnadu, India.A graph $G(p,q)$ is said to be odd harmonious if there exists an injection $f: V(G)\rightarrow\left\{0, 1, 2,\cdots,2q-1\right\}$ such that the induced function $f^{*}: E(G)\rightarrow\left\{1, 3,\cdots,2q-1\right\}$ defined by $f^{*}(uv) = f(u)+ f(v)$ is a bijection. In this paper we prove that $T_p$- tree, $T\hat\circ P_m$, $T\hat\circ 2P_m$, regular bamboo tree, $C_n\hat\circ P_m$, $C_n\hat\circ 2P_m$ and subdivided grid graphs are odd harmonious.http://revistas.ufro.cl/ojs/index.php/cubo/article/view/2466/2023harmonious labelingodd harmonious labelingtransformed treesubdivided grid graphregular bamboo tree
spellingShingle P. Jeyanthi
S. Philo
Odd Harmonious Labeling of Some Classes of Graphs
Cubo
harmonious labeling
odd harmonious labeling
transformed tree
subdivided grid graph
regular bamboo tree
title Odd Harmonious Labeling of Some Classes of Graphs
title_full Odd Harmonious Labeling of Some Classes of Graphs
title_fullStr Odd Harmonious Labeling of Some Classes of Graphs
title_full_unstemmed Odd Harmonious Labeling of Some Classes of Graphs
title_short Odd Harmonious Labeling of Some Classes of Graphs
title_sort odd harmonious labeling of some classes of graphs
topic harmonious labeling
odd harmonious labeling
transformed tree
subdivided grid graph
regular bamboo tree
url http://revistas.ufro.cl/ojs/index.php/cubo/article/view/2466/2023
work_keys_str_mv AT pjeyanthi oddharmoniouslabelingofsomeclassesofgraphs
AT sphilo oddharmoniouslabelingofsomeclassesofgraphs