AMBRA1 and FAK1: crosstalking for improved targeted therapy in melanoma

Through genetically engineered mouse models of melanoma, we identified Autophagy/beclin 1 regulator 1 (Ambra1) as novel tumor-suppressor in melanoma. In these settings, loss of Ambra1 associated with the hyperactivation of focal adhesion kinase 1 (Fak1) signaling, the inhibition of which resulted in...

Full description

Bibliographic Details
Main Authors: Luca Di Leo, Daniela De Zio
Format: Article
Language:English
Published: Taylor & Francis Group 2021-07-01
Series:Molecular & Cellular Oncology
Subjects:
Online Access:http://dx.doi.org/10.1080/23723556.2021.1949955
Description
Summary:Through genetically engineered mouse models of melanoma, we identified Autophagy/beclin 1 regulator 1 (Ambra1) as novel tumor-suppressor in melanoma. In these settings, loss of Ambra1 associated with the hyperactivation of focal adhesion kinase 1 (Fak1) signaling, the inhibition of which resulted in reduced tumor growth and invasiveness. We therefore propose FAK1 inhibition for current melanoma therapy in AMBRA1-low tumors. Abbreviations AKT, serine/threonine kinase 1; AMBRA1, autophagy/beclin 1 regulator 1; BRAF, v-raf murine sarcoma viral oncogene homolog; BRAFi, BRAF inhibitor; CCLE, Cancer Cell Line Encyclopedia;g ESTDAB, European Searchable Tumor Line Database; FAK1, focal adhesion kinase 1; FAKi, FAK1 inhibitor; LMC, Leeds Melanoma Cohort; MEK, MAPK/ERK kinase; PP2A, protein phosphatase 2A; PTEN, phosphatase and tensin homolog; TCGA-SKCM, The Cancer Genome Atlas - Skin Cutaneous Melanoma; YAP, yes-associated protein 1.
ISSN:2372-3556