Surface‐modified Ag@Ru‐P25 for photocatalytic CO2 conversion with high selectivity over CH4 formation at the solid–gas interface

Abstract Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO2 reduction to solar fuels. A surface‐modified Ag@Ru‐P25 photocatalyst with H2O2 treatment was desi...

Full description

Bibliographic Details
Main Authors: Chaitanya B. Hiragond, Sohag Biswas, Niket S. Powar, Junho Lee, Eunhee Gong, Hwapyong Kim, Hong Soo Kim, Jin‐Woo Jung, Chang‐Hee Cho, Bryan M. Wong, Su‐Il In
Format: Article
Language:English
Published: Wiley 2024-01-01
Series:Carbon Energy
Subjects:
Online Access:https://doi.org/10.1002/cey2.386
Description
Summary:Abstract Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO2 reduction to solar fuels. A surface‐modified Ag@Ru‐P25 photocatalyst with H2O2 treatment was designed in this study to convert CO2 and H2O vapor into highly selective CH4. Ru doping followed by Ag nanoparticles (NPs) cocatalyst deposition on P25 (TiO2) enhances visible light absorption and charge separation, whereas H2O2 treatment modifies the surface of the photocatalyst with hydroxyl (–OH) groups and promotes CO2 adsorption. High‐resonance transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray absorption near‐edge structure, and extended X‐ray absorption fine structure techniques were used to analyze the surface and chemical composition of the photocatalyst, while thermogravimetric analysis, CO2 adsorption isotherm, and temperature programmed desorption study were performed to examine the significance of H2O2 treatment in increasing CO2 reduction activity. The optimized Ag1.0@Ru1.0‐P25 photocatalyst performed excellent CO2 reduction activity into CO, CH4, and C2H6 with a ~95% selectivity of CH4, where the activity was ~135 times higher than that of pristine TiO2 (P25). For the first time, this work explored the effect of H2O2 treatment on the photocatalyst that dramatically increases CO2 reduction activity.
ISSN:2637-9368