Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation

Expeditious urbanization and rapid industrialization have significantly influenced the rise of energy demand globally in the past two decades. Solar energy is considered a vital energy source that addresses this demand in a cost-effective and environmentally friendly manner. Improving solar cell eff...

Full description

Bibliographic Details
Main Authors: Gokul Sidarth Thirunavukkarasu, Mehdi Seyedmahmoudian, Jaideep Chandran, Alex Stojcevski, Maruthamuthu Subramanian, Raj Marnadu, S. Alfaify, Mohd. Shkir
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/16/4986
Description
Summary:Expeditious urbanization and rapid industrialization have significantly influenced the rise of energy demand globally in the past two decades. Solar energy is considered a vital energy source that addresses this demand in a cost-effective and environmentally friendly manner. Improving solar cell efficiency is considered a prerequisite to reinforcing silicon solar cells’ growth in the energy market. In this study, the influence of various parameters like the thickness of the absorber or wafer, doping concentration, bulk resistivity, lifetime, and doping levels of the emitter and back surface field, along with the surface recombination velocity (front and back) on solar cell efficiency was investigated using PC1D simulation software. Inferences from the results indicated that the bulk resistivity of 1 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula>·cm; bulk lifetime of 2 ms; emitter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mi>n</mi></mrow><mo>+</mo></msup></semantics></math></inline-formula>) doping concentration of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>20</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula> and shallow back surface field doping concentration of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>18</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>; surface recombination velocity maintained in the range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>2</mn></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>3</mn></msup></semantics></math></inline-formula> cm/s obtained a solar cell efficiency of 19%. The Simulation study presented in this article allows faster, simpler, and easier impact analysis of the design considerations on the Si solar cell wafer fabrications with increased performance.
ISSN:1996-1073