Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation
Expeditious urbanization and rapid industrialization have significantly influenced the rise of energy demand globally in the past two decades. Solar energy is considered a vital energy source that addresses this demand in a cost-effective and environmentally friendly manner. Improving solar cell eff...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/14/16/4986 |
_version_ | 1827685352171634688 |
---|---|
author | Gokul Sidarth Thirunavukkarasu Mehdi Seyedmahmoudian Jaideep Chandran Alex Stojcevski Maruthamuthu Subramanian Raj Marnadu S. Alfaify Mohd. Shkir |
author_facet | Gokul Sidarth Thirunavukkarasu Mehdi Seyedmahmoudian Jaideep Chandran Alex Stojcevski Maruthamuthu Subramanian Raj Marnadu S. Alfaify Mohd. Shkir |
author_sort | Gokul Sidarth Thirunavukkarasu |
collection | DOAJ |
description | Expeditious urbanization and rapid industrialization have significantly influenced the rise of energy demand globally in the past two decades. Solar energy is considered a vital energy source that addresses this demand in a cost-effective and environmentally friendly manner. Improving solar cell efficiency is considered a prerequisite to reinforcing silicon solar cells’ growth in the energy market. In this study, the influence of various parameters like the thickness of the absorber or wafer, doping concentration, bulk resistivity, lifetime, and doping levels of the emitter and back surface field, along with the surface recombination velocity (front and back) on solar cell efficiency was investigated using PC1D simulation software. Inferences from the results indicated that the bulk resistivity of 1 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula>·cm; bulk lifetime of 2 ms; emitter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mi>n</mi></mrow><mo>+</mo></msup></semantics></math></inline-formula>) doping concentration of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>20</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula> and shallow back surface field doping concentration of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>18</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>; surface recombination velocity maintained in the range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>2</mn></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>3</mn></msup></semantics></math></inline-formula> cm/s obtained a solar cell efficiency of 19%. The Simulation study presented in this article allows faster, simpler, and easier impact analysis of the design considerations on the Si solar cell wafer fabrications with increased performance. |
first_indexed | 2024-03-10T08:50:35Z |
format | Article |
id | doaj.art-5080159bb2094da5a56ea22a890ab0d3 |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-03-10T08:50:35Z |
publishDate | 2021-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-5080159bb2094da5a56ea22a890ab0d32023-11-22T07:30:16ZengMDPI AGEnergies1996-10732021-08-011416498610.3390/en14164986Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D SimulationGokul Sidarth Thirunavukkarasu0Mehdi Seyedmahmoudian1Jaideep Chandran2Alex Stojcevski3Maruthamuthu Subramanian4Raj Marnadu5S. Alfaify6Mohd. Shkir7School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, AustraliaSchool of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, AustraliaSchool of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, AustraliaSchool of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, AustraliaDepartment of Physics, PSG Institute of Technology and Applied Research, Coimbatore 641062, Tamil Nadu, IndiaDepartment of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu, IndiaAdvanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi ArabiaAdvanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi ArabiaExpeditious urbanization and rapid industrialization have significantly influenced the rise of energy demand globally in the past two decades. Solar energy is considered a vital energy source that addresses this demand in a cost-effective and environmentally friendly manner. Improving solar cell efficiency is considered a prerequisite to reinforcing silicon solar cells’ growth in the energy market. In this study, the influence of various parameters like the thickness of the absorber or wafer, doping concentration, bulk resistivity, lifetime, and doping levels of the emitter and back surface field, along with the surface recombination velocity (front and back) on solar cell efficiency was investigated using PC1D simulation software. Inferences from the results indicated that the bulk resistivity of 1 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula>·cm; bulk lifetime of 2 ms; emitter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mi>n</mi></mrow><mo>+</mo></msup></semantics></math></inline-formula>) doping concentration of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>20</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula> and shallow back surface field doping concentration of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>18</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>; surface recombination velocity maintained in the range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>2</mn></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>3</mn></msup></semantics></math></inline-formula> cm/s obtained a solar cell efficiency of 19%. The Simulation study presented in this article allows faster, simpler, and easier impact analysis of the design considerations on the Si solar cell wafer fabrications with increased performance.https://www.mdpi.com/1996-1073/14/16/4986crystalline silicondoping concentrationsolar cellsPC1Dsurface recombination velocity |
spellingShingle | Gokul Sidarth Thirunavukkarasu Mehdi Seyedmahmoudian Jaideep Chandran Alex Stojcevski Maruthamuthu Subramanian Raj Marnadu S. Alfaify Mohd. Shkir Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation Energies crystalline silicon doping concentration solar cells PC1D surface recombination velocity |
title | Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation |
title_full | Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation |
title_fullStr | Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation |
title_full_unstemmed | Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation |
title_short | Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation |
title_sort | optimization of mono crystalline silicon solar cell devices using pc1d simulation |
topic | crystalline silicon doping concentration solar cells PC1D surface recombination velocity |
url | https://www.mdpi.com/1996-1073/14/16/4986 |
work_keys_str_mv | AT gokulsidarththirunavukkarasu optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation AT mehdiseyedmahmoudian optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation AT jaideepchandran optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation AT alexstojcevski optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation AT maruthamuthusubramanian optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation AT rajmarnadu optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation AT salfaify optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation AT mohdshkir optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation |