Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation

Expeditious urbanization and rapid industrialization have significantly influenced the rise of energy demand globally in the past two decades. Solar energy is considered a vital energy source that addresses this demand in a cost-effective and environmentally friendly manner. Improving solar cell eff...

Full description

Bibliographic Details
Main Authors: Gokul Sidarth Thirunavukkarasu, Mehdi Seyedmahmoudian, Jaideep Chandran, Alex Stojcevski, Maruthamuthu Subramanian, Raj Marnadu, S. Alfaify, Mohd. Shkir
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/16/4986
_version_ 1827685352171634688
author Gokul Sidarth Thirunavukkarasu
Mehdi Seyedmahmoudian
Jaideep Chandran
Alex Stojcevski
Maruthamuthu Subramanian
Raj Marnadu
S. Alfaify
Mohd. Shkir
author_facet Gokul Sidarth Thirunavukkarasu
Mehdi Seyedmahmoudian
Jaideep Chandran
Alex Stojcevski
Maruthamuthu Subramanian
Raj Marnadu
S. Alfaify
Mohd. Shkir
author_sort Gokul Sidarth Thirunavukkarasu
collection DOAJ
description Expeditious urbanization and rapid industrialization have significantly influenced the rise of energy demand globally in the past two decades. Solar energy is considered a vital energy source that addresses this demand in a cost-effective and environmentally friendly manner. Improving solar cell efficiency is considered a prerequisite to reinforcing silicon solar cells’ growth in the energy market. In this study, the influence of various parameters like the thickness of the absorber or wafer, doping concentration, bulk resistivity, lifetime, and doping levels of the emitter and back surface field, along with the surface recombination velocity (front and back) on solar cell efficiency was investigated using PC1D simulation software. Inferences from the results indicated that the bulk resistivity of 1 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula>·cm; bulk lifetime of 2 ms; emitter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mi>n</mi></mrow><mo>+</mo></msup></semantics></math></inline-formula>) doping concentration of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>20</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula> and shallow back surface field doping concentration of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>18</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>; surface recombination velocity maintained in the range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>2</mn></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>3</mn></msup></semantics></math></inline-formula> cm/s obtained a solar cell efficiency of 19%. The Simulation study presented in this article allows faster, simpler, and easier impact analysis of the design considerations on the Si solar cell wafer fabrications with increased performance.
first_indexed 2024-03-10T08:50:35Z
format Article
id doaj.art-5080159bb2094da5a56ea22a890ab0d3
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-10T08:50:35Z
publishDate 2021-08-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-5080159bb2094da5a56ea22a890ab0d32023-11-22T07:30:16ZengMDPI AGEnergies1996-10732021-08-011416498610.3390/en14164986Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D SimulationGokul Sidarth Thirunavukkarasu0Mehdi Seyedmahmoudian1Jaideep Chandran2Alex Stojcevski3Maruthamuthu Subramanian4Raj Marnadu5S. Alfaify6Mohd. Shkir7School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, AustraliaSchool of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, AustraliaSchool of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, AustraliaSchool of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, AustraliaDepartment of Physics, PSG Institute of Technology and Applied Research, Coimbatore 641062, Tamil Nadu, IndiaDepartment of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamil Nadu, IndiaAdvanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi ArabiaAdvanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi ArabiaExpeditious urbanization and rapid industrialization have significantly influenced the rise of energy demand globally in the past two decades. Solar energy is considered a vital energy source that addresses this demand in a cost-effective and environmentally friendly manner. Improving solar cell efficiency is considered a prerequisite to reinforcing silicon solar cells’ growth in the energy market. In this study, the influence of various parameters like the thickness of the absorber or wafer, doping concentration, bulk resistivity, lifetime, and doping levels of the emitter and back surface field, along with the surface recombination velocity (front and back) on solar cell efficiency was investigated using PC1D simulation software. Inferences from the results indicated that the bulk resistivity of 1 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Ω</mi></semantics></math></inline-formula>·cm; bulk lifetime of 2 ms; emitter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mi>n</mi></mrow><mo>+</mo></msup></semantics></math></inline-formula>) doping concentration of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>20</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula> and shallow back surface field doping concentration of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>×</mo><msup><mn>10</mn><mn>18</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula>; surface recombination velocity maintained in the range of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>2</mn></msup></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>3</mn></msup></semantics></math></inline-formula> cm/s obtained a solar cell efficiency of 19%. The Simulation study presented in this article allows faster, simpler, and easier impact analysis of the design considerations on the Si solar cell wafer fabrications with increased performance.https://www.mdpi.com/1996-1073/14/16/4986crystalline silicondoping concentrationsolar cellsPC1Dsurface recombination velocity
spellingShingle Gokul Sidarth Thirunavukkarasu
Mehdi Seyedmahmoudian
Jaideep Chandran
Alex Stojcevski
Maruthamuthu Subramanian
Raj Marnadu
S. Alfaify
Mohd. Shkir
Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation
Energies
crystalline silicon
doping concentration
solar cells
PC1D
surface recombination velocity
title Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation
title_full Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation
title_fullStr Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation
title_full_unstemmed Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation
title_short Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation
title_sort optimization of mono crystalline silicon solar cell devices using pc1d simulation
topic crystalline silicon
doping concentration
solar cells
PC1D
surface recombination velocity
url https://www.mdpi.com/1996-1073/14/16/4986
work_keys_str_mv AT gokulsidarththirunavukkarasu optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation
AT mehdiseyedmahmoudian optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation
AT jaideepchandran optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation
AT alexstojcevski optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation
AT maruthamuthusubramanian optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation
AT rajmarnadu optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation
AT salfaify optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation
AT mohdshkir optimizationofmonocrystallinesiliconsolarcelldevicesusingpc1dsimulation