Quasirecognition by prime graph of $C_{n}(4) $, where $ n\geq17 $ is odd

Let $G$ be a finite group and let $\Gamma(G) $ be the prime graph of $ G$. We assume that $ n\geq 17$ is an odd number. In this paper, we show that if $ \Gamma(G) = \Gamma(C_{n}(4))$, then $ G$ has a unique non-abelian composition factor isomorphic to $C_{n}(4)$. As consequences of our result, $C_{n...

Full description

Bibliographic Details
Main Authors: Somayeh Mosavi, Neda Ahanjideh
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2015-02-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/21969
_version_ 1818163685866078208
author Somayeh Mosavi
Neda Ahanjideh
author_facet Somayeh Mosavi
Neda Ahanjideh
author_sort Somayeh Mosavi
collection DOAJ
description Let $G$ be a finite group and let $\Gamma(G) $ be the prime graph of $ G$. We assume that $ n\geq 17$ is an odd number. In this paper, we show that if $ \Gamma(G) = \Gamma(C_{n}(4))$, then $ G$ has a unique non-abelian composition factor isomorphic to $C_{n}(4)$. As consequences of our result, $C_{n}(4)$ is quasirecognizable by its spectrum and by prime graph.
first_indexed 2024-12-11T16:53:30Z
format Article
id doaj.art-50938bf1869944ab9cc441d408d8c66f
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-12-11T16:53:30Z
publishDate 2015-02-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-50938bf1869944ab9cc441d408d8c66f2022-12-22T00:58:03ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882015-02-01331576510.5269/bspm.v33i1.2196910705Quasirecognition by prime graph of $C_{n}(4) $, where $ n\geq17 $ is oddSomayeh Mosavi0Neda Ahanjideh1Sahrekord University Department of pure Mathematics Faculty of Mathematical SciencesSahrekord University Department of pure Mathematics Faculty of Mathematical SciencesLet $G$ be a finite group and let $\Gamma(G) $ be the prime graph of $ G$. We assume that $ n\geq 17$ is an odd number. In this paper, we show that if $ \Gamma(G) = \Gamma(C_{n}(4))$, then $ G$ has a unique non-abelian composition factor isomorphic to $C_{n}(4)$. As consequences of our result, $C_{n}(4)$ is quasirecognizable by its spectrum and by prime graph.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/21969Quasirecognitionprime graphsimple groupelement order
spellingShingle Somayeh Mosavi
Neda Ahanjideh
Quasirecognition by prime graph of $C_{n}(4) $, where $ n\geq17 $ is odd
Boletim da Sociedade Paranaense de Matemática
Quasirecognition
prime graph
simple group
element order
title Quasirecognition by prime graph of $C_{n}(4) $, where $ n\geq17 $ is odd
title_full Quasirecognition by prime graph of $C_{n}(4) $, where $ n\geq17 $ is odd
title_fullStr Quasirecognition by prime graph of $C_{n}(4) $, where $ n\geq17 $ is odd
title_full_unstemmed Quasirecognition by prime graph of $C_{n}(4) $, where $ n\geq17 $ is odd
title_short Quasirecognition by prime graph of $C_{n}(4) $, where $ n\geq17 $ is odd
title_sort quasirecognition by prime graph of c n 4 where n geq17 is odd
topic Quasirecognition
prime graph
simple group
element order
url http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/21969
work_keys_str_mv AT somayehmosavi quasirecognitionbyprimegraphofcn4wherengeq17isodd
AT nedaahanjideh quasirecognitionbyprimegraphofcn4wherengeq17isodd