Positive solutions for a class of nonhomogeneous Kirchhoff–Schrödinger–Poisson systems

Abstract This paper deals with the following generalized nonhomogeneous Kirchhoff–Schrödinger–Poisson system: {(a+∫R3|∇u|2+b∫R3u2)(−Δu+bu)+qϕf(u)=g(u)+h(x),in R3,−Δϕ=2qF(u),in R3, $$ \textstyle\begin{cases} (a+\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}+b\int _{\mathbb{R}^{3}} u ^{2} )(-\Delta...

Full description

Bibliographic Details
Main Author: Hongxia Shi
Format: Article
Language:English
Published: SpringerOpen 2019-08-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-019-1252-7
_version_ 1828764085264580608
author Hongxia Shi
author_facet Hongxia Shi
author_sort Hongxia Shi
collection DOAJ
description Abstract This paper deals with the following generalized nonhomogeneous Kirchhoff–Schrödinger–Poisson system: {(a+∫R3|∇u|2+b∫R3u2)(−Δu+bu)+qϕf(u)=g(u)+h(x),in R3,−Δϕ=2qF(u),in R3, $$ \textstyle\begin{cases} (a+\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}+b\int _{\mathbb{R}^{3}} u ^{2} )(-\Delta u+bu)+q\phi f(u)=g(u)+h(x), & \text{in } \mathbb{R}^{3}, \\ -\Delta \phi =2q F(u), & \text{in }\mathbb{R}^{3}, \end{cases} $$ where a>0 $a>0$, b≥0 $b\geq 0$ are constants, q≥0 $q\geq 0$ is a parameter, and F(t)=∫0tf(s)ds $F(t)=\int _{0}^{t}f(s)\,\mathrm{d}s$. Under some appropriate assumptions on g(u) $g(u)$ and h(x) $h(x)$, the existence of two positive radial solutions is proved by applying Ekeland’s variational principle and the mountain pass theorem.
first_indexed 2024-12-11T02:14:21Z
format Article
id doaj.art-50980bd0c10c46fdba7eee431e150cdc
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-12-11T02:14:21Z
publishDate 2019-08-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-50980bd0c10c46fdba7eee431e150cdc2022-12-22T01:24:12ZengSpringerOpenBoundary Value Problems1687-27702019-08-012019111610.1186/s13661-019-1252-7Positive solutions for a class of nonhomogeneous Kirchhoff–Schrödinger–Poisson systemsHongxia Shi0School of Mathematics and Computational Science, Hunan First Normal UniversityAbstract This paper deals with the following generalized nonhomogeneous Kirchhoff–Schrödinger–Poisson system: {(a+∫R3|∇u|2+b∫R3u2)(−Δu+bu)+qϕf(u)=g(u)+h(x),in R3,−Δϕ=2qF(u),in R3, $$ \textstyle\begin{cases} (a+\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}+b\int _{\mathbb{R}^{3}} u ^{2} )(-\Delta u+bu)+q\phi f(u)=g(u)+h(x), & \text{in } \mathbb{R}^{3}, \\ -\Delta \phi =2q F(u), & \text{in }\mathbb{R}^{3}, \end{cases} $$ where a>0 $a>0$, b≥0 $b\geq 0$ are constants, q≥0 $q\geq 0$ is a parameter, and F(t)=∫0tf(s)ds $F(t)=\int _{0}^{t}f(s)\,\mathrm{d}s$. Under some appropriate assumptions on g(u) $g(u)$ and h(x) $h(x)$, the existence of two positive radial solutions is proved by applying Ekeland’s variational principle and the mountain pass theorem.http://link.springer.com/article/10.1186/s13661-019-1252-7Kirchhoff–Schrödinger–Poisson systemsVariational methodsCut-off functionalPohozaev type identity
spellingShingle Hongxia Shi
Positive solutions for a class of nonhomogeneous Kirchhoff–Schrödinger–Poisson systems
Boundary Value Problems
Kirchhoff–Schrödinger–Poisson systems
Variational methods
Cut-off functional
Pohozaev type identity
title Positive solutions for a class of nonhomogeneous Kirchhoff–Schrödinger–Poisson systems
title_full Positive solutions for a class of nonhomogeneous Kirchhoff–Schrödinger–Poisson systems
title_fullStr Positive solutions for a class of nonhomogeneous Kirchhoff–Schrödinger–Poisson systems
title_full_unstemmed Positive solutions for a class of nonhomogeneous Kirchhoff–Schrödinger–Poisson systems
title_short Positive solutions for a class of nonhomogeneous Kirchhoff–Schrödinger–Poisson systems
title_sort positive solutions for a class of nonhomogeneous kirchhoff schrodinger poisson systems
topic Kirchhoff–Schrödinger–Poisson systems
Variational methods
Cut-off functional
Pohozaev type identity
url http://link.springer.com/article/10.1186/s13661-019-1252-7
work_keys_str_mv AT hongxiashi positivesolutionsforaclassofnonhomogeneouskirchhoffschrodingerpoissonsystems