Transient Convective Heat Transfer in Porous Media

In this study, several methods to analyze convective heat transfer in a porous medium are presented and discussed. First, the method of Fourier was used to obtain solutions for reduced temperatures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inli...

Full description

Bibliographic Details
Main Authors: Ruben D’Rose, Mark Willemsz, David Smeulders
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/21/4415
_version_ 1797631635660734464
author Ruben D’Rose
Mark Willemsz
David Smeulders
author_facet Ruben D’Rose
Mark Willemsz
David Smeulders
author_sort Ruben D’Rose
collection DOAJ
description In this study, several methods to analyze convective heat transfer in a porous medium are presented and discussed. First, the method of Fourier was used to obtain solutions for reduced temperatures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>s</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>f</mi></msub></semantics></math></inline-formula>. The results showed an exponentially decaying propagating temperature front. Then, we discuss the method of integration that was presented earlier by Schumann. This method makes use of a transformation of variables. Thirdly, the system of partial differential equations was directly solved with the Finite Difference method, of which the result showed good agreement with the Fourier solutions. For the chosen <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="sans-serif">Δ</mi><mi>τ</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="sans-serif">Δ</mi><mi>ξ</mi></mrow></semantics></math></inline-formula>, the maximum error for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>θ</mi><mi>f</mi></msub><mo>=</mo><mn>3.7</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The maximum error for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>s</mi></msub></semantics></math></inline-formula> for the first <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> and first <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> is large (36%) but decays rapidly. The problem was extended by adding a linear heat source term to the solid. Again, making use of the change in variables, analytical solutions were derived for the solid and fluid phases, and corrections to the previous literature were suggested. Finally, results obtained from a numerical model were compared to the analytical solutions, which again showed good agreement (maximum error of 6%).
first_indexed 2024-03-11T11:25:15Z
format Article
id doaj.art-50996a8f2c794088b9cf03aafaeaa696
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T11:25:15Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-50996a8f2c794088b9cf03aafaeaa6962023-11-10T15:07:49ZengMDPI AGMathematics2227-73902023-10-011121441510.3390/math11214415Transient Convective Heat Transfer in Porous MediaRuben D’Rose0Mark Willemsz1David Smeulders2Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The NetherlandsDepartment of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The NetherlandsDepartment of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The NetherlandsIn this study, several methods to analyze convective heat transfer in a porous medium are presented and discussed. First, the method of Fourier was used to obtain solutions for reduced temperatures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>s</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>f</mi></msub></semantics></math></inline-formula>. The results showed an exponentially decaying propagating temperature front. Then, we discuss the method of integration that was presented earlier by Schumann. This method makes use of a transformation of variables. Thirdly, the system of partial differential equations was directly solved with the Finite Difference method, of which the result showed good agreement with the Fourier solutions. For the chosen <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="sans-serif">Δ</mi><mi>τ</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="sans-serif">Δ</mi><mi>ξ</mi></mrow></semantics></math></inline-formula>, the maximum error for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>θ</mi><mi>f</mi></msub><mo>=</mo><mn>3.7</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The maximum error for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mi>s</mi></msub></semantics></math></inline-formula> for the first <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> and first <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> is large (36%) but decays rapidly. The problem was extended by adding a linear heat source term to the solid. Again, making use of the change in variables, analytical solutions were derived for the solid and fluid phases, and corrections to the previous literature were suggested. Finally, results obtained from a numerical model were compared to the analytical solutions, which again showed good agreement (maximum error of 6%).https://www.mdpi.com/2227-7390/11/21/4415mathematical modelnumerical methodheat transfer
spellingShingle Ruben D’Rose
Mark Willemsz
David Smeulders
Transient Convective Heat Transfer in Porous Media
Mathematics
mathematical model
numerical method
heat transfer
title Transient Convective Heat Transfer in Porous Media
title_full Transient Convective Heat Transfer in Porous Media
title_fullStr Transient Convective Heat Transfer in Porous Media
title_full_unstemmed Transient Convective Heat Transfer in Porous Media
title_short Transient Convective Heat Transfer in Porous Media
title_sort transient convective heat transfer in porous media
topic mathematical model
numerical method
heat transfer
url https://www.mdpi.com/2227-7390/11/21/4415
work_keys_str_mv AT rubendrose transientconvectiveheattransferinporousmedia
AT markwillemsz transientconvectiveheattransferinporousmedia
AT davidsmeulders transientconvectiveheattransferinporousmedia