A Study on the Dynamic Effects and Ecological Stress of Eco-Environment in the Headwaters of the Yangtze River Based on Improved DeepLab V3+ Network

The headwaters of the Yangtze River are a complicated system composed of different eco-environment elements. The abnormal moisture and energy exchanges between the atmosphere and earth systems caused by global climate change are predicted to produce drastic changes in these eco-environment elements....

Full description

Bibliographic Details
Main Authors: Chunsheng Wang, Rui Zhang, Lili Chang
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/9/2225
Description
Summary:The headwaters of the Yangtze River are a complicated system composed of different eco-environment elements. The abnormal moisture and energy exchanges between the atmosphere and earth systems caused by global climate change are predicted to produce drastic changes in these eco-environment elements. In order to study the dynamic effect and ecological stress in the eco-environment, we adapted the Double Attention Mechanism (DAM) to improve the performance of the DeepLab V3+ network in large-scale semantic segmentation. We proposed Elements Fragmentation (<i>EF</i>) and Elements Information Content (<i>EIC</i>) to quantitatively analyze the spatial distribution characteristics and spatial relationships of eco-environment elements. In this paper, the following conclusions were drawn: (1) we established sample sets based on “Sentinel-2” remote sensing images using the interpretation signs of eco-environment elements; (2) the <i>mAP</i>, <i>mIoU</i>, and <i>Kappa</i> of the improved DeepLab V3+ method were 0.639, 0.778, and 0.825, respectively, which demonstrates a good ability to distinguish the eco-environment elements; (3) between 2015 and 2021, <i>EF</i> gradually increased from 0.2234 to 0.2394, and <i>EIC</i> increased from 23.80 to 25.32, which shows that the eco-environment is oriented to complex, heterogeneous, and discontinuous processes; (4) the headwaters of the Yangtze River are a community of life, and thus we should build a multifunctional ecological management system with which to implement well-organized and efficient scientific ecological rehabilitation projects.
ISSN:2072-4292