The effects of ruminant milk treatments on hippocampal, striatal, and prefrontal cortex gene expression in pigs as a model for the human infant

While infant formula is usually bovine milk-based, interest in other ruminant milk-based formulas is growing. However, whether different ruminant milk treatments with varying nutrient compositions influence the infant’s brain development remains unknown. The aim was to determine the effects of consu...

Full description

Bibliographic Details
Main Authors: Ankita Jena, Carlos A. Montoya, Wayne Young, Jane A. Mullaney, Debashree Roy, Ryan N. Dilger, Caroline Giezenaar, Warren C. McNabb, Nicole C. Roy
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-08-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnins.2022.937845/full
_version_ 1811215563045732352
author Ankita Jena
Ankita Jena
Ankita Jena
Carlos A. Montoya
Carlos A. Montoya
Wayne Young
Wayne Young
Wayne Young
Jane A. Mullaney
Jane A. Mullaney
Jane A. Mullaney
Debashree Roy
Ryan N. Dilger
Caroline Giezenaar
Caroline Giezenaar
Warren C. McNabb
Warren C. McNabb
Nicole C. Roy
Nicole C. Roy
Nicole C. Roy
author_facet Ankita Jena
Ankita Jena
Ankita Jena
Carlos A. Montoya
Carlos A. Montoya
Wayne Young
Wayne Young
Wayne Young
Jane A. Mullaney
Jane A. Mullaney
Jane A. Mullaney
Debashree Roy
Ryan N. Dilger
Caroline Giezenaar
Caroline Giezenaar
Warren C. McNabb
Warren C. McNabb
Nicole C. Roy
Nicole C. Roy
Nicole C. Roy
author_sort Ankita Jena
collection DOAJ
description While infant formula is usually bovine milk-based, interest in other ruminant milk-based formulas is growing. However, whether different ruminant milk treatments with varying nutrient compositions influence the infant’s brain development remains unknown. The aim was to determine the effects of consuming bovine, caprine, or ovine milk on brain gene expression in the early postnatal period using a pig model of the human infant. Starting at postnatal day 7 or 8, pigs were exclusively fed bovine, ovine, or caprine milk for 15 days. The mRNA abundance of 77 genes in the prefrontal cortex, hippocampus, and striatum regions was measured at postnatal day 21 or 22 using NanoString. The expression level of two hippocampal and nine striatal genes was most affected by milk treatments, particularly ovine milk. These modulatory genes are involved in glutamate, gamma-aminobutyric acid, serotonin, adrenaline and neurotrophin signaling and the synaptic vesicle cycle. The expression level of genes involved in gamma-aminobutyric acid signaling was associated with pigs’ lactose intake. In contrast, milk treatments did not affect the mRNA abundance of the genes in the prefrontal cortex. This study provides the first evidence of the association of different ruminant milk treatments with brain gene expression related to cognitive function in the first 3 months of postnatal life.
first_indexed 2024-04-12T06:24:37Z
format Article
id doaj.art-50b430778a044ee9bb6a0ce51c41c0f2
institution Directory Open Access Journal
issn 1662-453X
language English
last_indexed 2024-04-12T06:24:37Z
publishDate 2022-08-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neuroscience
spelling doaj.art-50b430778a044ee9bb6a0ce51c41c0f22022-12-22T03:44:12ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2022-08-011610.3389/fnins.2022.937845937845The effects of ruminant milk treatments on hippocampal, striatal, and prefrontal cortex gene expression in pigs as a model for the human infantAnkita Jena0Ankita Jena1Ankita Jena2Carlos A. Montoya3Carlos A. Montoya4Wayne Young5Wayne Young6Wayne Young7Jane A. Mullaney8Jane A. Mullaney9Jane A. Mullaney10Debashree Roy11Ryan N. Dilger12Caroline Giezenaar13Caroline Giezenaar14Warren C. McNabb15Warren C. McNabb16Nicole C. Roy17Nicole C. Roy18Nicole C. Roy19Riddet Institute, Massey University, Palmerston North, New ZealandSchool of Food and Advanced Technology, College of Sciences, Massey University, Palmerston North, New ZealandAgResearch, Palmerston North, New ZealandRiddet Institute, Massey University, Palmerston North, New ZealandAgResearch, Palmerston North, New ZealandRiddet Institute, Massey University, Palmerston North, New ZealandAgResearch, Palmerston North, New ZealandHigh-Value Nutrition National Science Challenge, Auckland, New ZealandRiddet Institute, Massey University, Palmerston North, New ZealandAgResearch, Palmerston North, New ZealandHigh-Value Nutrition National Science Challenge, Auckland, New ZealandRiddet Institute, Massey University, Palmerston North, New ZealandDepartment of Animal Sciences, University of Illinois, Urbana, IL, United StatesRiddet Institute, Massey University, Palmerston North, New ZealandFood Experience and Sensory Testing (FEAST) Laboratory, School of Food and Advanced Technology, Massey University, Palmerston North, New ZealandRiddet Institute, Massey University, Palmerston North, New ZealandHigh-Value Nutrition National Science Challenge, Auckland, New ZealandRiddet Institute, Massey University, Palmerston North, New ZealandHigh-Value Nutrition National Science Challenge, Auckland, New ZealandDepartment of Human Nutrition, University of Otago, Dunedin, New ZealandWhile infant formula is usually bovine milk-based, interest in other ruminant milk-based formulas is growing. However, whether different ruminant milk treatments with varying nutrient compositions influence the infant’s brain development remains unknown. The aim was to determine the effects of consuming bovine, caprine, or ovine milk on brain gene expression in the early postnatal period using a pig model of the human infant. Starting at postnatal day 7 or 8, pigs were exclusively fed bovine, ovine, or caprine milk for 15 days. The mRNA abundance of 77 genes in the prefrontal cortex, hippocampus, and striatum regions was measured at postnatal day 21 or 22 using NanoString. The expression level of two hippocampal and nine striatal genes was most affected by milk treatments, particularly ovine milk. These modulatory genes are involved in glutamate, gamma-aminobutyric acid, serotonin, adrenaline and neurotrophin signaling and the synaptic vesicle cycle. The expression level of genes involved in gamma-aminobutyric acid signaling was associated with pigs’ lactose intake. In contrast, milk treatments did not affect the mRNA abundance of the genes in the prefrontal cortex. This study provides the first evidence of the association of different ruminant milk treatments with brain gene expression related to cognitive function in the first 3 months of postnatal life.https://www.frontiersin.org/articles/10.3389/fnins.2022.937845/fullnutritionearly lifecognitionpiggut-brain axisbrain gene expression
spellingShingle Ankita Jena
Ankita Jena
Ankita Jena
Carlos A. Montoya
Carlos A. Montoya
Wayne Young
Wayne Young
Wayne Young
Jane A. Mullaney
Jane A. Mullaney
Jane A. Mullaney
Debashree Roy
Ryan N. Dilger
Caroline Giezenaar
Caroline Giezenaar
Warren C. McNabb
Warren C. McNabb
Nicole C. Roy
Nicole C. Roy
Nicole C. Roy
The effects of ruminant milk treatments on hippocampal, striatal, and prefrontal cortex gene expression in pigs as a model for the human infant
Frontiers in Neuroscience
nutrition
early life
cognition
pig
gut-brain axis
brain gene expression
title The effects of ruminant milk treatments on hippocampal, striatal, and prefrontal cortex gene expression in pigs as a model for the human infant
title_full The effects of ruminant milk treatments on hippocampal, striatal, and prefrontal cortex gene expression in pigs as a model for the human infant
title_fullStr The effects of ruminant milk treatments on hippocampal, striatal, and prefrontal cortex gene expression in pigs as a model for the human infant
title_full_unstemmed The effects of ruminant milk treatments on hippocampal, striatal, and prefrontal cortex gene expression in pigs as a model for the human infant
title_short The effects of ruminant milk treatments on hippocampal, striatal, and prefrontal cortex gene expression in pigs as a model for the human infant
title_sort effects of ruminant milk treatments on hippocampal striatal and prefrontal cortex gene expression in pigs as a model for the human infant
topic nutrition
early life
cognition
pig
gut-brain axis
brain gene expression
url https://www.frontiersin.org/articles/10.3389/fnins.2022.937845/full
work_keys_str_mv AT ankitajena theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT ankitajena theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT ankitajena theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT carlosamontoya theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT carlosamontoya theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT wayneyoung theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT wayneyoung theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT wayneyoung theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT janeamullaney theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT janeamullaney theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT janeamullaney theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT debashreeroy theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT ryanndilger theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT carolinegiezenaar theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT carolinegiezenaar theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT warrencmcnabb theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT warrencmcnabb theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT nicolecroy theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT nicolecroy theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT nicolecroy theeffectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT ankitajena effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT ankitajena effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT ankitajena effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT carlosamontoya effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT carlosamontoya effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT wayneyoung effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT wayneyoung effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT wayneyoung effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT janeamullaney effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT janeamullaney effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT janeamullaney effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT debashreeroy effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT ryanndilger effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT carolinegiezenaar effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT carolinegiezenaar effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT warrencmcnabb effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT warrencmcnabb effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT nicolecroy effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT nicolecroy effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant
AT nicolecroy effectsofruminantmilktreatmentsonhippocampalstriatalandprefrontalcortexgeneexpressioninpigsasamodelforthehumaninfant