Nasal polyps show decreased mucociliary transport despite vigorous ciliary beating

Objective: Mucociliary transport function in the airway mucosa is essential for maintaining a clean mucosal surface. This function is impaired in upper and lower airway diseases. Nasal polyps are a noticeable pathological feature that develop in some of the patients with chronic rhinosinusitis. Like...

Full description

Bibliographic Details
Main Authors: Thi Nga Nguyen, Yuma Koga, Tetsuro Wakasugi, Takuro Kitamura, Hideaki Suzuki
Format: Article
Language:English
Published: Elsevier 2024-03-01
Series:Brazilian Journal of Otorhinolaryngology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1808869423001453
Description
Summary:Objective: Mucociliary transport function in the airway mucosa is essential for maintaining a clean mucosal surface. This function is impaired in upper and lower airway diseases. Nasal polyps are a noticeable pathological feature that develop in some of the patients with chronic rhinosinusitis. Like ordinary nasal mucosae, nasal polyps have a ciliated pseudostratified epithelium with vigorous ciliary beating. We measured ex vivo Mucociliary Transport Velocity (MCTV) and Ciliary Beat Frequency (CBF) and explored the expressions of Planar Cell Polarity (PCP) proteins in nasal polyps in comparison with turbinate mucosae. Methods: Inferior turbinates and nasal polyps were surgically collected from patients with chronic rhinosinusitis. Ex vivo MCTV and CBF were measured using a high-speed digital imaging system. Expressions of PCP proteins were explored by fluorescence immunohistochemistry and quantitative RT-PCR. Results: The MCTV of nasal polyps was significantly lower than that of the turbinates (7.43 ± 2.01 vs. 14.56 ± 2.09 μm/s; p = 0.0361), whereas CBF did not differ between the two tissues. The MCTV vector was pointed to the posteroinferior direction in all turbinates with an average inclination angle of 41.0 degrees. Immunohistochemical expressions of Dishevelled-1, Dishevelled-3, Frizzled3, Frizzled6, Prickle2 and Vangl2 were lower in the nasal polyps than in the turbinates. Confocal laser scanning microscopy showed that Frizzled3 was localized along the cell junction on the apical surface. The expression levels of mRNAs for Dishevelled-1, Dishevelled-3 and Frizzled3 in the nasal polyps were also decreased in comparison with the turbinates. Conclusion: These results indicate that muco ciliary transport in nasal polyps is impaired although vigorous ciliary beating is maintained, and that the impairment may be caused by a decrease in Dishevelled/Frizzled proteins and resultant PCP disarrangement. Level of evidence: Level 3.
ISSN:1808-8694