Characteristics of Raindrop Size Distributions in the Southwest Mountain Areas of China According to Seasonal Variation and Rain Types

The precipitation and raindrop size distribution (RSD) characteristics of the four seasons and different rain types were studied using a PARSIVEL<sup>2</sup> raindrop disdrometer set in the southwest mountain areas of China from 2019 to 2021. The seasonal precipitation in the southwest m...

Full description

Bibliographic Details
Main Authors: Haopeng Wu, Shengjie Niu, Yue Zhou, Jing Sun, Jingjing Lv, Yixiao He
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/5/1246
Description
Summary:The precipitation and raindrop size distribution (RSD) characteristics of the four seasons and different rain types were studied using a PARSIVEL<sup>2</sup> raindrop disdrometer set in the southwest mountain areas of China from 2019 to 2021. The seasonal precipitation in the southwest mountain areas was mainly stratiform rain. The peaks of the RSD were about 1–2 orders of magnitude higher than those in the plains. The convective rain in spring and autumn was very close to the ocean-like convective mass. The local shape–slope (<i>μ</i>–Λ), radar reflectivity–rain rate (<i>Z</i>–<i>R</i>), and kinetic energy–rain rate (<i>KE</i>–<i>R</i>) relationships were further derived, and the diversity of these relationships was mainly due to the variability of the RSDs. In addition, the differences in the RSD characteristics between the top and the foot of the mountain during a typical precipitation process in the summer of 2020 were further compared. It was found that the number density of the small particles at the top of the mountain was higher than that at the foot of the mountain due to the broken large raindrops caused by the high wind speed, while the high evaporation rate, strong convective available potential energy (CPAE), and water vapor content at the foot of the mountain could strengthen the RSD, making the number density of the large raindrops at the foot of the mountain higher than that at the top.
ISSN:2072-4292