Sobolev-Slobodeckij Spaces on Compact Manifolds, Revisited

In this manuscript, we present a coherent rigorous overview of the main properties of Sobolev-Slobodeckij spaces of sections of vector bundles on compact manifolds; results of this type are scattered through the literature and can be difficult to find. A special emphasis has been put on spaces with...

Full description

Bibliographic Details
Main Authors: Ali Behzadan, Michael Holst
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/3/522
_version_ 1797486293119139840
author Ali Behzadan
Michael Holst
author_facet Ali Behzadan
Michael Holst
author_sort Ali Behzadan
collection DOAJ
description In this manuscript, we present a coherent rigorous overview of the main properties of Sobolev-Slobodeckij spaces of sections of vector bundles on compact manifolds; results of this type are scattered through the literature and can be difficult to find. A special emphasis has been put on spaces with noninteger smoothness order, and a special attention has been paid to the peculiar fact that for a general nonsmooth domain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>t</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula>, it is not necessarily true that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>W</mi><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo stretchy="false">(</mo><mo>Ω</mo><mo stretchy="false">)</mo></mrow><mo>↪</mo><msup><mi>W</mi><mrow><mi>t</mi><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo stretchy="false">(</mo><mo>Ω</mo><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. This has dire consequences in the multiplication properties of Sobolev-Slobodeckij spaces and subsequently in the study of Sobolev spaces on manifolds. We focus on establishing certain fundamental properties of Sobolev-Slobodeckij spaces that are particularly useful in better understanding the behavior of elliptic differential operators on compact manifolds. In particular, by introducing notions such as “geometrically Lipschitz atlases” we build a general framework for developing multiplication theorems, embedding results, etc. for Sobolev-Slobodeckij spaces on compact manifolds. To the authors’ knowledge, some of the proofs, especially those that are pertinent to the properties of Sobolev-Slobodeckij spaces of sections of general vector bundles, cannot be found in the literature in the generality appearing here.
first_indexed 2024-03-09T23:31:07Z
format Article
id doaj.art-50debb14d3144233990e36bb6cf9441c
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T23:31:07Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-50debb14d3144233990e36bb6cf9441c2023-11-23T17:08:55ZengMDPI AGMathematics2227-73902022-02-0110352210.3390/math10030522Sobolev-Slobodeckij Spaces on Compact Manifolds, RevisitedAli Behzadan0Michael Holst1Department of Mathematics and Statistics, California State University Sacramento, Sacramento, CA 95819, USADepartment of Mathematics, University of California San Diego, La Jolla, San Diego, CA 92093, USAIn this manuscript, we present a coherent rigorous overview of the main properties of Sobolev-Slobodeckij spaces of sections of vector bundles on compact manifolds; results of this type are scattered through the literature and can be difficult to find. A special emphasis has been put on spaces with noninteger smoothness order, and a special attention has been paid to the peculiar fact that for a general nonsmooth domain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>t</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula>, it is not necessarily true that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>W</mi><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo stretchy="false">(</mo><mo>Ω</mo><mo stretchy="false">)</mo></mrow><mo>↪</mo><msup><mi>W</mi><mrow><mi>t</mi><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo stretchy="false">(</mo><mo>Ω</mo><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. This has dire consequences in the multiplication properties of Sobolev-Slobodeckij spaces and subsequently in the study of Sobolev spaces on manifolds. We focus on establishing certain fundamental properties of Sobolev-Slobodeckij spaces that are particularly useful in better understanding the behavior of elliptic differential operators on compact manifolds. In particular, by introducing notions such as “geometrically Lipschitz atlases” we build a general framework for developing multiplication theorems, embedding results, etc. for Sobolev-Slobodeckij spaces on compact manifolds. To the authors’ knowledge, some of the proofs, especially those that are pertinent to the properties of Sobolev-Slobodeckij spaces of sections of general vector bundles, cannot be found in the literature in the generality appearing here.https://www.mdpi.com/2227-7390/10/3/522Sobolev spacescompact manifoldstensor bundlesdifferential operators
spellingShingle Ali Behzadan
Michael Holst
Sobolev-Slobodeckij Spaces on Compact Manifolds, Revisited
Mathematics
Sobolev spaces
compact manifolds
tensor bundles
differential operators
title Sobolev-Slobodeckij Spaces on Compact Manifolds, Revisited
title_full Sobolev-Slobodeckij Spaces on Compact Manifolds, Revisited
title_fullStr Sobolev-Slobodeckij Spaces on Compact Manifolds, Revisited
title_full_unstemmed Sobolev-Slobodeckij Spaces on Compact Manifolds, Revisited
title_short Sobolev-Slobodeckij Spaces on Compact Manifolds, Revisited
title_sort sobolev slobodeckij spaces on compact manifolds revisited
topic Sobolev spaces
compact manifolds
tensor bundles
differential operators
url https://www.mdpi.com/2227-7390/10/3/522
work_keys_str_mv AT alibehzadan sobolevslobodeckijspacesoncompactmanifoldsrevisited
AT michaelholst sobolevslobodeckijspacesoncompactmanifoldsrevisited