(<i>β</i>,<i>γ</i>)-Skew QC Codes with Derivation over a Semi-Local Ring

In this article, we consider a semi-local ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">S</mi><mo>=</mo><msub><mi mathvariant="...

Full description

Bibliographic Details
Main Authors: Mohammad Ashraf, Amal S. Alali, Mohd Asim, Ghulam Mohammad
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/1/225
_version_ 1797436812307726336
author Mohammad Ashraf
Amal S. Alali
Mohd Asim
Ghulam Mohammad
author_facet Mohammad Ashraf
Amal S. Alali
Mohd Asim
Ghulam Mohammad
author_sort Mohammad Ashraf
collection DOAJ
description In this article, we consider a semi-local ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">S</mi><mo>=</mo><msub><mi mathvariant="double-struck">F</mi><mi>q</mi></msub><mo>+</mo><mi>u</mi><msub><mi mathvariant="double-struck">F</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>u</mi><mn>2</mn></msup><mo>=</mo><mi>u</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><msup><mi>p</mi><mi>s</mi></msup></mrow></semantics></math></inline-formula> and <i>p</i> is a prime number. We define a multiplication <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><mi>b</mi><mo>=</mo><mi>β</mi><mo>(</mo><mi>b</mi><mo>)</mo><mi>y</mi><mo>+</mo><mi>γ</mi><mo>(</mo><mi>b</mi><mo>)</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> is an automorphism and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> is a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-derivation on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">S</mi></semantics></math></inline-formula> so that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">S</mi><mo>[</mo><mi>y</mi><mo>;</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>]</mo></mrow></semantics></math></inline-formula> becomes a non-commutative ring which is known as skew polynomial ring. We give the characterization of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">S</mi><mo>[</mo><mi>y</mi><mo>;</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>]</mo></mrow></semantics></math></inline-formula> and obtain the most striking results that are better than previous findings. We also determine the structural properties of 1-generator skew cyclic and skew-quasi cyclic codes. Further, We demonstrate remarkable results of the above-mentioned codes over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">S</mi></semantics></math></inline-formula>. Finally, we find the duality of skew cyclic and skew-quasi cyclic codes using a symmetric inner product. These codes are further generalized to double skew cyclic and skew quasi cyclic codes and a table of optimal codes is calculated by MAGMA software.
first_indexed 2024-03-09T11:07:01Z
format Article
id doaj.art-50e1283b7e4448acb6121d669ea95a76
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T11:07:01Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-50e1283b7e4448acb6121d669ea95a762023-12-01T00:53:45ZengMDPI AGSymmetry2073-89942023-01-0115122510.3390/sym15010225(<i>β</i>,<i>γ</i>)-Skew QC Codes with Derivation over a Semi-Local RingMohammad Ashraf0Amal S. Alali1Mohd Asim2Ghulam Mohammad3Department of Mathematics, Aligarh Muslim University, Aligarh 202002, IndiaDepartment of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi ArabiaDepartment of Mathematics, Aligarh Muslim University, Aligarh 202002, IndiaDepartment of Mathematics, Aligarh Muslim University, Aligarh 202002, IndiaIn this article, we consider a semi-local ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">S</mi><mo>=</mo><msub><mi mathvariant="double-struck">F</mi><mi>q</mi></msub><mo>+</mo><mi>u</mi><msub><mi mathvariant="double-struck">F</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>u</mi><mn>2</mn></msup><mo>=</mo><mi>u</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><msup><mi>p</mi><mi>s</mi></msup></mrow></semantics></math></inline-formula> and <i>p</i> is a prime number. We define a multiplication <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><mi>b</mi><mo>=</mo><mi>β</mi><mo>(</mo><mi>b</mi><mo>)</mo><mi>y</mi><mo>+</mo><mi>γ</mi><mo>(</mo><mi>b</mi><mo>)</mo></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> is an automorphism and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> is a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-derivation on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">S</mi></semantics></math></inline-formula> so that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">S</mi><mo>[</mo><mi>y</mi><mo>;</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>]</mo></mrow></semantics></math></inline-formula> becomes a non-commutative ring which is known as skew polynomial ring. We give the characterization of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold">S</mi><mo>[</mo><mi>y</mi><mo>;</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>]</mo></mrow></semantics></math></inline-formula> and obtain the most striking results that are better than previous findings. We also determine the structural properties of 1-generator skew cyclic and skew-quasi cyclic codes. Further, We demonstrate remarkable results of the above-mentioned codes over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">S</mi></semantics></math></inline-formula>. Finally, we find the duality of skew cyclic and skew-quasi cyclic codes using a symmetric inner product. These codes are further generalized to double skew cyclic and skew quasi cyclic codes and a table of optimal codes is calculated by MAGMA software.https://www.mdpi.com/2073-8994/15/1/225skew polynomial ringskew cyclic codesskew QC codesGray map
spellingShingle Mohammad Ashraf
Amal S. Alali
Mohd Asim
Ghulam Mohammad
(<i>β</i>,<i>γ</i>)-Skew QC Codes with Derivation over a Semi-Local Ring
Symmetry
skew polynomial ring
skew cyclic codes
skew QC codes
Gray map
title (<i>β</i>,<i>γ</i>)-Skew QC Codes with Derivation over a Semi-Local Ring
title_full (<i>β</i>,<i>γ</i>)-Skew QC Codes with Derivation over a Semi-Local Ring
title_fullStr (<i>β</i>,<i>γ</i>)-Skew QC Codes with Derivation over a Semi-Local Ring
title_full_unstemmed (<i>β</i>,<i>γ</i>)-Skew QC Codes with Derivation over a Semi-Local Ring
title_short (<i>β</i>,<i>γ</i>)-Skew QC Codes with Derivation over a Semi-Local Ring
title_sort i β i i γ i skew qc codes with derivation over a semi local ring
topic skew polynomial ring
skew cyclic codes
skew QC codes
Gray map
url https://www.mdpi.com/2073-8994/15/1/225
work_keys_str_mv AT mohammadashraf ibiigiskewqccodeswithderivationoverasemilocalring
AT amalsalali ibiigiskewqccodeswithderivationoverasemilocalring
AT mohdasim ibiigiskewqccodeswithderivationoverasemilocalring
AT ghulammohammad ibiigiskewqccodeswithderivationoverasemilocalring