The Calabi–Yau property of Ore extensions of two-dimensional Artin–Schelter regular algebras and their PBW deformations

Let $A$ be a noncommutative Artin–Schelter regular algebra of dimension $2$ with the Nakayama automorphism $\mu _A$ and $U$ a PBW deformation of $A$ with the Nakayama automorphism $\mu _U$. We prove that any graded Ore extension $A[z;\mu _A,\delta ]$ and any filtered Ore extension $U[z;\mu _U,\tilde...

Full description

Bibliographic Details
Main Authors: Shen, Yuan, Guo, Yang
Format: Article
Language:English
Published: Académie des sciences 2022-06-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.268/
_version_ 1797651466542907392
author Shen, Yuan
Guo, Yang
author_facet Shen, Yuan
Guo, Yang
author_sort Shen, Yuan
collection DOAJ
description Let $A$ be a noncommutative Artin–Schelter regular algebra of dimension $2$ with the Nakayama automorphism $\mu _A$ and $U$ a PBW deformation of $A$ with the Nakayama automorphism $\mu _U$. We prove that any graded Ore extension $A[z;\mu _A,\delta ]$ and any filtered Ore extension $U[z;\mu _U,\tilde{\delta }]$ are $3$-Calabi–Yau.
first_indexed 2024-03-11T16:16:09Z
format Article
id doaj.art-50f6fc89b4e44c17a5419b531009ca2c
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-11T16:16:09Z
publishDate 2022-06-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-50f6fc89b4e44c17a5419b531009ca2c2023-10-24T14:19:36ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692022-06-01360G773974910.5802/crmath.26810.5802/crmath.268The Calabi–Yau property of Ore extensions of two-dimensional Artin–Schelter regular algebras and their PBW deformationsShen, Yuan0Guo, Yang1Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, ChinaDepartment of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, ChinaLet $A$ be a noncommutative Artin–Schelter regular algebra of dimension $2$ with the Nakayama automorphism $\mu _A$ and $U$ a PBW deformation of $A$ with the Nakayama automorphism $\mu _U$. We prove that any graded Ore extension $A[z;\mu _A,\delta ]$ and any filtered Ore extension $U[z;\mu _U,\tilde{\delta }]$ are $3$-Calabi–Yau.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.268/
spellingShingle Shen, Yuan
Guo, Yang
The Calabi–Yau property of Ore extensions of two-dimensional Artin–Schelter regular algebras and their PBW deformations
Comptes Rendus. Mathématique
title The Calabi–Yau property of Ore extensions of two-dimensional Artin–Schelter regular algebras and their PBW deformations
title_full The Calabi–Yau property of Ore extensions of two-dimensional Artin–Schelter regular algebras and their PBW deformations
title_fullStr The Calabi–Yau property of Ore extensions of two-dimensional Artin–Schelter regular algebras and their PBW deformations
title_full_unstemmed The Calabi–Yau property of Ore extensions of two-dimensional Artin–Schelter regular algebras and their PBW deformations
title_short The Calabi–Yau property of Ore extensions of two-dimensional Artin–Schelter regular algebras and their PBW deformations
title_sort calabi yau property of ore extensions of two dimensional artin schelter regular algebras and their pbw deformations
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.268/
work_keys_str_mv AT shenyuan thecalabiyaupropertyoforeextensionsoftwodimensionalartinschelterregularalgebrasandtheirpbwdeformations
AT guoyang thecalabiyaupropertyoforeextensionsoftwodimensionalartinschelterregularalgebrasandtheirpbwdeformations
AT shenyuan calabiyaupropertyoforeextensionsoftwodimensionalartinschelterregularalgebrasandtheirpbwdeformations
AT guoyang calabiyaupropertyoforeextensionsoftwodimensionalartinschelterregularalgebrasandtheirpbwdeformations