Neurofilament light as a biomarker of axonal degeneration in patients with mild cognitive impairment and Alzheimer’s disease

Cerebrospinal fluid neurofilament light and plasma neurofilament light concentrations are elevated in patients with mild cognitive impairment and Alzheimer’s disease. We investigated the clinical relevance of increased neurofilament light concentrations in mild cognitive impairment and Alzheimer...

Full description

Bibliographic Details
Main Authors: Yi Chen, Joseph Therriault, Jing Luo, Maowen Ba, Hua Zhang, Alzheimer’s Disease Neuroimaging Initiative
Format: Article
Language:English
Published: IMR Press 2021-12-01
Series:Journal of Integrative Neuroscience
Subjects:
Online Access:https://www.imrpress.com/journal/JIN/20/4/10.31083/j.jin2004088
Description
Summary:Cerebrospinal fluid neurofilament light and plasma neurofilament light concentrations are elevated in patients with mild cognitive impairment and Alzheimer’s disease. We investigated the clinical relevance of increased neurofilament light concentrations in mild cognitive impairment and Alzheimer’s disease patients. In this study, 244 subjects were divided into cognitively normal control (n = 67), stable mild cognitive impairment (n = 52), progressive mild cognitive impairment (n = 68), and Alzheimer’s disease (n = 57). Linear regression examined the relationships between neurofilament light levels in cerebrospinal fluid or plasma and the diagnostic group. The relationships between neurofilament light and other biomarkers were assessed by Spearman correlation. Linear mixed-effects models were used to test cerebrospinal fluid and plasma neurofilament light as predictors of Alzheimer’s disease characteristics, including cognition, cortical glucose metabolism, and brain structure. Cerebrospinal fluid and plasma neurofilament light levels were significantly elevated in Alzheimer’s disease. Still, the correlations between neurofilament light and other cerebrospinal fluid biomarkers within the diagnostic groups were often not statistically significant. In addition, the diagnostic accuracy of cerebrospinal fluid and plasma neurofilament light for progressive mild cognitive impairment and Alzheimer’s disease was almost the same as that of cerebrospinal fluid total tau (T-tau). It is phosphorylated tau (P-tau) and high cerebrospinal fluid. Neurofilament light predicted conversion from mild cognitive impairment to Alzheimer’s disease. A high neurofilament light is related to poor cognition, low cerebral metabolism, hippocampal atrophy, and ventricular enlargement caused by Alzheimer’s disease. Our work further identifies cerebrospinal fluid neurofilament light and plasma neurofilament light as biomarkers of axonal degeneration in patients with mild cognitive impairment and Alzheimer’s disease.
ISSN:1757-448X