A Novel and Effective Cooperative RANSAC Image Matching Method Using Geometry Histogram-Based Constructed Reduced Correspondence Set

The success of many computer vision and pattern recognition applications depends on matching local features on two or more images. Because the initial correspondence set—i.e., the set of the initial feature pairs—is often contaminated by mismatches, removing mismatches is a necessary task prior to i...

Full description

Bibliographic Details
Main Authors: Kuo-Liang Chung, Ya-Chi Tseng, Hsuan-Ying Chen
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/14/3256
_version_ 1797433107777847296
author Kuo-Liang Chung
Ya-Chi Tseng
Hsuan-Ying Chen
author_facet Kuo-Liang Chung
Ya-Chi Tseng
Hsuan-Ying Chen
author_sort Kuo-Liang Chung
collection DOAJ
description The success of many computer vision and pattern recognition applications depends on matching local features on two or more images. Because the initial correspondence set—i.e., the set of the initial feature pairs—is often contaminated by mismatches, removing mismatches is a necessary task prior to image matching. In this paper, we first propose a fast geometry histogram-based (GH-based) mismatch removal strategy to construct a reduced correspondence set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>r</mi><mi>e</mi><mi>d</mi><mi>u</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo>,</mo><mi>G</mi><mi>H</mi></mrow></msup></semantics></math></inline-formula> from the initial correspondence set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>i</mi><mi>n</mi><mi>i</mi></mrow></msup></semantics></math></inline-formula>. Next, we propose an effective cooperative random sample consensus (COOSAC) method for remote sensing image matching. COOSAC consists of a RANSAC, called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>A</mi><mi>N</mi><mi>S</mi><mi>A</mi><msup><mi>C</mi><mrow><mi>i</mi><mi>n</mi><mi>i</mi></mrow></msup></mrow></semantics></math></inline-formula> working on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>i</mi><mi>n</mi><mi>i</mi></mrow></msup></semantics></math></inline-formula>, and a tiny RANSAC, called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>A</mi><mi>N</mi><mi>S</mi><mi>A</mi><msup><mi>C</mi><mrow><mi>t</mi><mi>i</mi><mi>n</mi><mi>y</mi><mo>,</mo><mi>G</mi><mi>H</mi></mrow></msup></mrow></semantics></math></inline-formula> working on a randomly selected subset of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>r</mi><mi>e</mi><mi>d</mi><mi>u</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo>,</mo><mi>G</mi><mi>H</mi></mrow></msup></semantics></math></inline-formula>. In <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>A</mi><mi>N</mi><mi>S</mi><mi>A</mi><msup><mi>C</mi><mrow><mi>t</mi><mi>i</mi><mi>n</mi><mi>y</mi><mo>,</mo><mi>G</mi><mi>H</mi></mrow></msup></mrow></semantics></math></inline-formula>, an iterative area constraint-based sampling strategy is proposed to estimate the model solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>t</mi><mi>i</mi><mi>n</mi><mi>y</mi><mo>,</mo><mi>G</mi><mi>H</mi></mrow></msup></semantics></math></inline-formula> until the specified confidence level is reached, and then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>A</mi><mi>N</mi><mi>S</mi><mi>A</mi><msup><mi>C</mi><mrow><mi>i</mi><mi>n</mi><mi>i</mi></mrow></msup></mrow></semantics></math></inline-formula> utilizes the estimated model solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>t</mi><mi>i</mi><mi>n</mi><mi>y</mi><mo>,</mo><mi>G</mi><mi>H</mi></mrow></msup></semantics></math></inline-formula> to calculate the inlier rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>i</mi><mi>n</mi><mi>i</mi></mrow></msup></semantics></math></inline-formula>. COOSAC repeats the above cooperation between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>A</mi><mi>N</mi><mi>S</mi><mi>A</mi><msup><mi>C</mi><mrow><mi>t</mi><mi>i</mi><mi>n</mi><mi>y</mi><mo>,</mo><mi>G</mi><mi>H</mi></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>A</mi><mi>N</mi><mi>S</mi><mi>A</mi><msup><mi>C</mi><mrow><mi>i</mi><mi>n</mi><mi>i</mi></mrow></msup></mrow></semantics></math></inline-formula> until the specified confidence level is reached, reporting the resultant model solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>i</mi><mi>n</mi><mi>i</mi></mrow></msup></semantics></math></inline-formula>. For convenience, our image matching method is called the GH-COOSAC method. Based on several testing datasets, thorough experimental results demonstrate that the proposed GH-COOSAC method achieves lower computational cost and higher matching accuracy benefits when compared with the state-of-the-art image matching methods.
first_indexed 2024-03-09T10:12:25Z
format Article
id doaj.art-5113b5f343c84f36b29d7a3fa8bb89aa
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-09T10:12:25Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-5113b5f343c84f36b29d7a3fa8bb89aa2023-12-01T22:38:28ZengMDPI AGRemote Sensing2072-42922022-07-011414325610.3390/rs14143256A Novel and Effective Cooperative RANSAC Image Matching Method Using Geometry Histogram-Based Constructed Reduced Correspondence SetKuo-Liang Chung0Ya-Chi Tseng1Hsuan-Ying Chen2Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei 10672, TaiwanDepartment of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei 10672, TaiwanDepartment of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei 10672, TaiwanThe success of many computer vision and pattern recognition applications depends on matching local features on two or more images. Because the initial correspondence set—i.e., the set of the initial feature pairs—is often contaminated by mismatches, removing mismatches is a necessary task prior to image matching. In this paper, we first propose a fast geometry histogram-based (GH-based) mismatch removal strategy to construct a reduced correspondence set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>r</mi><mi>e</mi><mi>d</mi><mi>u</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo>,</mo><mi>G</mi><mi>H</mi></mrow></msup></semantics></math></inline-formula> from the initial correspondence set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>i</mi><mi>n</mi><mi>i</mi></mrow></msup></semantics></math></inline-formula>. Next, we propose an effective cooperative random sample consensus (COOSAC) method for remote sensing image matching. COOSAC consists of a RANSAC, called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>A</mi><mi>N</mi><mi>S</mi><mi>A</mi><msup><mi>C</mi><mrow><mi>i</mi><mi>n</mi><mi>i</mi></mrow></msup></mrow></semantics></math></inline-formula> working on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>i</mi><mi>n</mi><mi>i</mi></mrow></msup></semantics></math></inline-formula>, and a tiny RANSAC, called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>A</mi><mi>N</mi><mi>S</mi><mi>A</mi><msup><mi>C</mi><mrow><mi>t</mi><mi>i</mi><mi>n</mi><mi>y</mi><mo>,</mo><mi>G</mi><mi>H</mi></mrow></msup></mrow></semantics></math></inline-formula> working on a randomly selected subset of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>r</mi><mi>e</mi><mi>d</mi><mi>u</mi><mi>c</mi><mi>e</mi><mi>d</mi><mo>,</mo><mi>G</mi><mi>H</mi></mrow></msup></semantics></math></inline-formula>. In <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>A</mi><mi>N</mi><mi>S</mi><mi>A</mi><msup><mi>C</mi><mrow><mi>t</mi><mi>i</mi><mi>n</mi><mi>y</mi><mo>,</mo><mi>G</mi><mi>H</mi></mrow></msup></mrow></semantics></math></inline-formula>, an iterative area constraint-based sampling strategy is proposed to estimate the model solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>t</mi><mi>i</mi><mi>n</mi><mi>y</mi><mo>,</mo><mi>G</mi><mi>H</mi></mrow></msup></semantics></math></inline-formula> until the specified confidence level is reached, and then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>A</mi><mi>N</mi><mi>S</mi><mi>A</mi><msup><mi>C</mi><mrow><mi>i</mi><mi>n</mi><mi>i</mi></mrow></msup></mrow></semantics></math></inline-formula> utilizes the estimated model solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>t</mi><mi>i</mi><mi>n</mi><mi>y</mi><mo>,</mo><mi>G</mi><mi>H</mi></mrow></msup></semantics></math></inline-formula> to calculate the inlier rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>i</mi><mi>n</mi><mi>i</mi></mrow></msup></semantics></math></inline-formula>. COOSAC repeats the above cooperation between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>A</mi><mi>N</mi><mi>S</mi><mi>A</mi><msup><mi>C</mi><mrow><mi>t</mi><mi>i</mi><mi>n</mi><mi>y</mi><mo>,</mo><mi>G</mi><mi>H</mi></mrow></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>A</mi><mi>N</mi><mi>S</mi><mi>A</mi><msup><mi>C</mi><mrow><mi>i</mi><mi>n</mi><mi>i</mi></mrow></msup></mrow></semantics></math></inline-formula> until the specified confidence level is reached, reporting the resultant model solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mrow><mi>i</mi><mi>n</mi><mi>i</mi></mrow></msup></semantics></math></inline-formula>. For convenience, our image matching method is called the GH-COOSAC method. Based on several testing datasets, thorough experimental results demonstrate that the proposed GH-COOSAC method achieves lower computational cost and higher matching accuracy benefits when compared with the state-of-the-art image matching methods.https://www.mdpi.com/2072-4292/14/14/3256confidence levelcomputational costhypothesize-and-verifyinlier ratematching accuracymodel solution
spellingShingle Kuo-Liang Chung
Ya-Chi Tseng
Hsuan-Ying Chen
A Novel and Effective Cooperative RANSAC Image Matching Method Using Geometry Histogram-Based Constructed Reduced Correspondence Set
Remote Sensing
confidence level
computational cost
hypothesize-and-verify
inlier rate
matching accuracy
model solution
title A Novel and Effective Cooperative RANSAC Image Matching Method Using Geometry Histogram-Based Constructed Reduced Correspondence Set
title_full A Novel and Effective Cooperative RANSAC Image Matching Method Using Geometry Histogram-Based Constructed Reduced Correspondence Set
title_fullStr A Novel and Effective Cooperative RANSAC Image Matching Method Using Geometry Histogram-Based Constructed Reduced Correspondence Set
title_full_unstemmed A Novel and Effective Cooperative RANSAC Image Matching Method Using Geometry Histogram-Based Constructed Reduced Correspondence Set
title_short A Novel and Effective Cooperative RANSAC Image Matching Method Using Geometry Histogram-Based Constructed Reduced Correspondence Set
title_sort novel and effective cooperative ransac image matching method using geometry histogram based constructed reduced correspondence set
topic confidence level
computational cost
hypothesize-and-verify
inlier rate
matching accuracy
model solution
url https://www.mdpi.com/2072-4292/14/14/3256
work_keys_str_mv AT kuoliangchung anovelandeffectivecooperativeransacimagematchingmethodusinggeometryhistogrambasedconstructedreducedcorrespondenceset
AT yachitseng anovelandeffectivecooperativeransacimagematchingmethodusinggeometryhistogrambasedconstructedreducedcorrespondenceset
AT hsuanyingchen anovelandeffectivecooperativeransacimagematchingmethodusinggeometryhistogrambasedconstructedreducedcorrespondenceset
AT kuoliangchung novelandeffectivecooperativeransacimagematchingmethodusinggeometryhistogrambasedconstructedreducedcorrespondenceset
AT yachitseng novelandeffectivecooperativeransacimagematchingmethodusinggeometryhistogrambasedconstructedreducedcorrespondenceset
AT hsuanyingchen novelandeffectivecooperativeransacimagematchingmethodusinggeometryhistogrambasedconstructedreducedcorrespondenceset