Experimental Investigation of Crystal Blocking in Drainage Pipes for Tunnels in the Karst Region

Crystal blockage of tunnel drainage pipes is one of the main causes of problems such as lining cracking and water leakage. The study of the crystal development rule is of great significance for the design of tunnel drainage systems and the long-term safety of tunnel support structures. In this paper...

Full description

Bibliographic Details
Main Authors: Chongbang Xu, Yang Chen, Yunxuan Yang, Pengfei Li, Siqing Wang, Lei Li
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/21/10928
Description
Summary:Crystal blockage of tunnel drainage pipes is one of the main causes of problems such as lining cracking and water leakage. The study of the crystal development rule is of great significance for the design of tunnel drainage systems and the long-term safety of tunnel support structures. In this paper, a series of experimental studies on the crystallization development law of drain pipes are conducted. The effects of the connection method of the drain, the diameter of the pipe, the spacing of the circular drain, and the material of the drain on the crystallization development pattern are investigated. The results show that the groundwater environment has a great influence on the crystallization development of the drain pipe. As the drain diameter and the spacing between two adjacent circular drains increased, the time for complete blockage of the drain is prolonged. The rate of crystallization on the drainage pipe can be effectively reduced by changing the material of the drainage pipe from polyamide (PA) to polypropylene (PP). The present study provides a reference for research work related to crystallization blockage in tunnel drainage pipes.
ISSN:2076-3417