Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3.
Adjunctive vitamin D treatment for pulmonary tuberculosis enhances resolution of inflammation but has modest effects on bacterial clearance. Sodium 4-phenylbutyrate (PBA) is in clinical use for a range of conditions and has been shown to synergise with vitamin D metabolites to upregulate cathelicidi...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-07-01
|
Series: | PLoS Pathogens |
Online Access: | http://europepmc.org/articles/PMC4489717?pdf=render |
_version_ | 1818359680146079744 |
---|---|
author | Anna K Coussens Robert J Wilkinson Adrian R Martineau |
author_facet | Anna K Coussens Robert J Wilkinson Adrian R Martineau |
author_sort | Anna K Coussens |
collection | DOAJ |
description | Adjunctive vitamin D treatment for pulmonary tuberculosis enhances resolution of inflammation but has modest effects on bacterial clearance. Sodium 4-phenylbutyrate (PBA) is in clinical use for a range of conditions and has been shown to synergise with vitamin D metabolites to upregulate cathelicidin antimicrobial peptide (CAMP) expression. We investigated whether clinically attainable plasma concentrations of PBA (0.4-4 mM) directly affect Mycobacterium tuberculosis (Mtb) growth and human macrophage and PBMC response to infection. We also tested the ability of PBA to enhance the immunomodulatory actions of the vitamin D metabolite 25(OH)D3 during infection and synergistically inhibit intracellular Mtb growth. PBA inhibited Mtb growth in broth with an MIC99 of 1 mM, which was reduced to 0.25 mM by lowering pH. During human macrophage infection, PBA treatment restricted Mtb uptake, phagocytic receptor expression and intracellular growth in a dose-dependent manner. PBA independently regulated CCL chemokine secretion and induced expression of the antimicrobial LTF (lactoferrin), the anti-inflammatory PROC (protein C) and multiple genes within the NLRP3 inflammasome pathway. PBA co-treatment with 25(OH)D3 synergistically modulated expression of numerous vitamin D-response genes, including CAMP, CYP24A1, CXCL10 and IL-37. This synergistic effect was dependent on MAPK signalling, while the effect of PBA on LTF, PROC and NLRP3 was MAPK-independent. During PBA and 25(OH)D3 co-treatment of human macrophages, in the absence of exogenous proteinase 3 (PR3) to activate cathelicidin, Mtb growth restriction was dominated by the effect of PBA, while the addition of PR3 enhanced growth restriction by 25(OH)D3 and PBA co-treatment. This suggests that PBA augments vitamin D-mediated cathelicidin-dependent Mtb growth restriction by human macrophages and independently induces antimicrobial and anti-inflammatory action. Therefore through both host-directed and bacterial-directed mechanisms PBA and vitamin D may prove an effective combinatorial adjunct therapy for tuberculosis to both resolve immunopathology and enhance bacterial clearance. |
first_indexed | 2024-12-13T20:48:44Z |
format | Article |
id | doaj.art-5131784a3a6c450eb01dde90fca4ab9e |
institution | Directory Open Access Journal |
issn | 1553-7366 1553-7374 |
language | English |
last_indexed | 2024-12-13T20:48:44Z |
publishDate | 2015-07-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS Pathogens |
spelling | doaj.art-5131784a3a6c450eb01dde90fca4ab9e2022-12-21T23:31:56ZengPublic Library of Science (PLoS)PLoS Pathogens1553-73661553-73742015-07-01117e100500710.1371/journal.ppat.1005007Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3.Anna K CoussensRobert J WilkinsonAdrian R MartineauAdjunctive vitamin D treatment for pulmonary tuberculosis enhances resolution of inflammation but has modest effects on bacterial clearance. Sodium 4-phenylbutyrate (PBA) is in clinical use for a range of conditions and has been shown to synergise with vitamin D metabolites to upregulate cathelicidin antimicrobial peptide (CAMP) expression. We investigated whether clinically attainable plasma concentrations of PBA (0.4-4 mM) directly affect Mycobacterium tuberculosis (Mtb) growth and human macrophage and PBMC response to infection. We also tested the ability of PBA to enhance the immunomodulatory actions of the vitamin D metabolite 25(OH)D3 during infection and synergistically inhibit intracellular Mtb growth. PBA inhibited Mtb growth in broth with an MIC99 of 1 mM, which was reduced to 0.25 mM by lowering pH. During human macrophage infection, PBA treatment restricted Mtb uptake, phagocytic receptor expression and intracellular growth in a dose-dependent manner. PBA independently regulated CCL chemokine secretion and induced expression of the antimicrobial LTF (lactoferrin), the anti-inflammatory PROC (protein C) and multiple genes within the NLRP3 inflammasome pathway. PBA co-treatment with 25(OH)D3 synergistically modulated expression of numerous vitamin D-response genes, including CAMP, CYP24A1, CXCL10 and IL-37. This synergistic effect was dependent on MAPK signalling, while the effect of PBA on LTF, PROC and NLRP3 was MAPK-independent. During PBA and 25(OH)D3 co-treatment of human macrophages, in the absence of exogenous proteinase 3 (PR3) to activate cathelicidin, Mtb growth restriction was dominated by the effect of PBA, while the addition of PR3 enhanced growth restriction by 25(OH)D3 and PBA co-treatment. This suggests that PBA augments vitamin D-mediated cathelicidin-dependent Mtb growth restriction by human macrophages and independently induces antimicrobial and anti-inflammatory action. Therefore through both host-directed and bacterial-directed mechanisms PBA and vitamin D may prove an effective combinatorial adjunct therapy for tuberculosis to both resolve immunopathology and enhance bacterial clearance.http://europepmc.org/articles/PMC4489717?pdf=render |
spellingShingle | Anna K Coussens Robert J Wilkinson Adrian R Martineau Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3. PLoS Pathogens |
title | Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3. |
title_full | Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3. |
title_fullStr | Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3. |
title_full_unstemmed | Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3. |
title_short | Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3. |
title_sort | phenylbutyrate is bacteriostatic against mycobacterium tuberculosis and regulates the macrophage response to infection synergistically with 25 hydroxy vitamin d3 |
url | http://europepmc.org/articles/PMC4489717?pdf=render |
work_keys_str_mv | AT annakcoussens phenylbutyrateisbacteriostaticagainstmycobacteriumtuberculosisandregulatesthemacrophageresponsetoinfectionsynergisticallywith25hydroxyvitamind3 AT robertjwilkinson phenylbutyrateisbacteriostaticagainstmycobacteriumtuberculosisandregulatesthemacrophageresponsetoinfectionsynergisticallywith25hydroxyvitamind3 AT adrianrmartineau phenylbutyrateisbacteriostaticagainstmycobacteriumtuberculosisandregulatesthemacrophageresponsetoinfectionsynergisticallywith25hydroxyvitamind3 |