Column operation studies for the removal of dyes and phenols using a low cost adsorbent

Fertilizer plant waste carbon slurry has been investigated after some processing as an adsorbent for the removal of dyes and phenols using columns. The results show that the carbonaceous adsorbent prepared from carbon slurry being porous and having appreciable surface area (380 m2/g) can remove dyes...

Full description

Bibliographic Details
Main Authors: V. K. Gupta, I. Tyagi, S. Agarwal, R. Singh, M. Chaudhary, A. Harit, S. Kushwaha
Format: Article
Language:English
Published: GJESM Publisher 2016-01-01
Series:Global Journal of Environmental Science and Management
Subjects:
Online Access:http://www.gjesm.net/pdf_15018_3fe79cdd78a74e187a9c90ec4e4dc9e9.html
Description
Summary:Fertilizer plant waste carbon slurry has been investigated after some processing as an adsorbent for the removal of dyes and phenols using columns. The results show that the carbonaceous adsorbent prepared from carbon slurry being porous and having appreciable surface area (380 m2/g) can remove dyes both cationic (meldola blue, methylene blue, chrysoidine G, crystal violet) as well as anionic (ethyl orange, metanil yellow, acid blue 113), and phenols (phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol) fruitfully from water. The column type continuous flow operations were used to obtain the breakthrough curves. The breakthrough capacity, exhaustion capacity and degree of column utilization were evaluated from the plots. The results shows that the degree of column utilization for dyes lies in the range 60 to 76% while for phenols was in the range 53-58%. The exhaustion capacities were quite high as compared to the breakthrough capacities and were found to be 217, 211, 104, 126, 233, 248, 267 mg/g for meldola blue, crystal violet, chrysoidine G, methylene blue, ethyl orange, metanil yellow, acid blue 113, respectively and 25.6, 72.2, 82.2 and 197.3 mg/g for  phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol, respectively
ISSN:2383-3572
2383-3866