Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications
The development of advanced materials is essential for sophisticated energy systems like a future fusion reactor. Tungsten fibre-reinforced tungsten composites (Wf/W) utilize extrinsic toughening mechanisms and therefore overcome the intrinsic brittleness of tungsten at low temperature and its sensi...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2016-12-01
|
Series: | Nuclear Materials and Energy |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352179115301344 |
_version_ | 1819075947441160192 |
---|---|
author | J. Riesch M. Aumann J.W. Coenen H. Gietl G. Holzner T. Höschen P. Huber M. Li Ch. Linsmeier R. Neu |
author_facet | J. Riesch M. Aumann J.W. Coenen H. Gietl G. Holzner T. Höschen P. Huber M. Li Ch. Linsmeier R. Neu |
author_sort | J. Riesch |
collection | DOAJ |
description | The development of advanced materials is essential for sophisticated energy systems like a future fusion reactor. Tungsten fibre-reinforced tungsten composites (Wf/W) utilize extrinsic toughening mechanisms and therefore overcome the intrinsic brittleness of tungsten at low temperature and its sensitivity to operational embrittlement. This material has been successfully produced and tested during the last years and the focus is now put on the technological realisation for the use in plasma facing components of fusion devices. In this contribution, we present a way to utilize Wf/W composites for divertor applications by a fabrication route based on the chemical vapour deposition (CVD) of tungsten. Mock-ups based on the ITER typical design can be realized by the implementation of Wf/W tiles. A concept based on a layered deposition approach allows the production of such tiles in the required geometry. One fibre layer after the other is positioned and ingrown into the W-matrix until the final sample size is reached. Charpy impact tests on these samples showed an increased fracture energy mainly due to the ductile deformation of the tungsten fibres. The use of Wf/W could broaden the operation temperature window of tungsten significantly and mitigate problems of deep cracking occurring typically in cyclic high heat flux loading. Textile techniques are utilized to optimise the tungsten wire positioning and process speed of preform production. A new device dedicated to the chemical deposition of W enhances significantly, the available machine time for processing and optimisation. Modelling shows that good deposition results are achievable by the use of a convectional flow and a directed temperature profile in an infiltration process. |
first_indexed | 2024-12-21T18:33:30Z |
format | Article |
id | doaj.art-513bf2e9516945b8a7fb72c7cbc2b9be |
institution | Directory Open Access Journal |
issn | 2352-1791 |
language | English |
last_indexed | 2024-12-21T18:33:30Z |
publishDate | 2016-12-01 |
publisher | Elsevier |
record_format | Article |
series | Nuclear Materials and Energy |
spelling | doaj.art-513bf2e9516945b8a7fb72c7cbc2b9be2022-12-21T18:54:12ZengElsevierNuclear Materials and Energy2352-17912016-12-019C758310.1016/j.nme.2016.03.005Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applicationsJ. Riesch0M. Aumann1J.W. Coenen2H. Gietl3G. Holzner4T. Höschen5P. Huber6M. Li7Ch. Linsmeier8R. Neu9Max-Planck-Institut für Plasmaphysik, 85748 Garching, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyMax-Planck-Institut für Plasmaphysik, 85748 Garching, GermanyMax-Planck-Institut für Plasmaphysik, 85748 Garching, GermanyMax-Planck-Institut für Plasmaphysik, 85748 Garching, GermanyInstitut für Textiltechnik (ITA) der RWTH Aachen University, 52072 Aachen, GermanyMax-Planck-Institut für Plasmaphysik, 85748 Garching, GermanyForschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, GermanyMax-Planck-Institut für Plasmaphysik, 85748 Garching, GermanyThe development of advanced materials is essential for sophisticated energy systems like a future fusion reactor. Tungsten fibre-reinforced tungsten composites (Wf/W) utilize extrinsic toughening mechanisms and therefore overcome the intrinsic brittleness of tungsten at low temperature and its sensitivity to operational embrittlement. This material has been successfully produced and tested during the last years and the focus is now put on the technological realisation for the use in plasma facing components of fusion devices. In this contribution, we present a way to utilize Wf/W composites for divertor applications by a fabrication route based on the chemical vapour deposition (CVD) of tungsten. Mock-ups based on the ITER typical design can be realized by the implementation of Wf/W tiles. A concept based on a layered deposition approach allows the production of such tiles in the required geometry. One fibre layer after the other is positioned and ingrown into the W-matrix until the final sample size is reached. Charpy impact tests on these samples showed an increased fracture energy mainly due to the ductile deformation of the tungsten fibres. The use of Wf/W could broaden the operation temperature window of tungsten significantly and mitigate problems of deep cracking occurring typically in cyclic high heat flux loading. Textile techniques are utilized to optimise the tungsten wire positioning and process speed of preform production. A new device dedicated to the chemical deposition of W enhances significantly, the available machine time for processing and optimisation. Modelling shows that good deposition results are achievable by the use of a convectional flow and a directed temperature profile in an infiltration process.http://www.sciencedirect.com/science/article/pii/S2352179115301344TungstenFibre-reinforced compositeMock-upDivertorChemical vapour deposition |
spellingShingle | J. Riesch M. Aumann J.W. Coenen H. Gietl G. Holzner T. Höschen P. Huber M. Li Ch. Linsmeier R. Neu Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications Nuclear Materials and Energy Tungsten Fibre-reinforced composite Mock-up Divertor Chemical vapour deposition |
title | Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications |
title_full | Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications |
title_fullStr | Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications |
title_full_unstemmed | Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications |
title_short | Chemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications |
title_sort | chemically deposited tungsten fibre reinforced tungsten the way to a mock up for divertor applications |
topic | Tungsten Fibre-reinforced composite Mock-up Divertor Chemical vapour deposition |
url | http://www.sciencedirect.com/science/article/pii/S2352179115301344 |
work_keys_str_mv | AT jriesch chemicallydepositedtungstenfibrereinforcedtungstenthewaytoamockupfordivertorapplications AT maumann chemicallydepositedtungstenfibrereinforcedtungstenthewaytoamockupfordivertorapplications AT jwcoenen chemicallydepositedtungstenfibrereinforcedtungstenthewaytoamockupfordivertorapplications AT hgietl chemicallydepositedtungstenfibrereinforcedtungstenthewaytoamockupfordivertorapplications AT gholzner chemicallydepositedtungstenfibrereinforcedtungstenthewaytoamockupfordivertorapplications AT thoschen chemicallydepositedtungstenfibrereinforcedtungstenthewaytoamockupfordivertorapplications AT phuber chemicallydepositedtungstenfibrereinforcedtungstenthewaytoamockupfordivertorapplications AT mli chemicallydepositedtungstenfibrereinforcedtungstenthewaytoamockupfordivertorapplications AT chlinsmeier chemicallydepositedtungstenfibrereinforcedtungstenthewaytoamockupfordivertorapplications AT rneu chemicallydepositedtungstenfibrereinforcedtungstenthewaytoamockupfordivertorapplications |