Flight planning in multi-unmanned aerial vehicle systems: Nonconvex polygon area decomposition and trajectory assignment
Nowadays, it is quite common to have one unmanned aerial vehicle (UAV) working on a task but having a team of UAVs is still rare. One of the problems that prevent us from using teams of UAVs more frequently is flight planning. In this work, we present the first open-source solution ( https://pypi.or...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2021-02-01
|
Series: | International Journal of Advanced Robotic Systems |
Online Access: | https://doi.org/10.1177/1729881421989551 |
Summary: | Nowadays, it is quite common to have one unmanned aerial vehicle (UAV) working on a task but having a team of UAVs is still rare. One of the problems that prevent us from using teams of UAVs more frequently is flight planning. In this work, we present the first open-source solution ( https://pypi.org/project/pode/ ) for splitting any complex area into multiple parts. The area of interest can be convex or nonconvex and can include any number of no-flight zones. Four solutions, based on the algorithm of Hert and Lumelsky, are tested with the aim of improving the compactness of the partitions. We also show how the shape of the partitions influences flight performance in a real case scenario. |
---|---|
ISSN: | 1729-8814 |