Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion Batteries
Due to its high theoretical specific capacity, a silicon anode is one of the candidates for realizing high energy density lithium-ion batteries (LIBs). However, problems related to bulk silicon (e.g., low intrinsic conductivity and massive volume expansion) limit the performance of silicon anodes. I...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-11-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/11/11/3137 |
_version_ | 1827675792279076864 |
---|---|
author | Andika Pandu Nugroho Naufal Hanif Hawari Bagas Prakoso Andam Deatama Refino Nursidik Yulianto Ferry Iskandar Evvy Kartini Erwin Peiner Hutomo Suryo Wasisto Afriyanti Sumboja |
author_facet | Andika Pandu Nugroho Naufal Hanif Hawari Bagas Prakoso Andam Deatama Refino Nursidik Yulianto Ferry Iskandar Evvy Kartini Erwin Peiner Hutomo Suryo Wasisto Afriyanti Sumboja |
author_sort | Andika Pandu Nugroho |
collection | DOAJ |
description | Due to its high theoretical specific capacity, a silicon anode is one of the candidates for realizing high energy density lithium-ion batteries (LIBs). However, problems related to bulk silicon (e.g., low intrinsic conductivity and massive volume expansion) limit the performance of silicon anodes. In this work, to improve the performance of silicon anodes, a vertically aligned <i>n</i>-type silicon nanowire array (<i>n</i>-SiNW) was fabricated using a well-controlled, top-down nano-machining technique by combining photolithography and inductively coupled plasma reactive ion etching (ICP-RIE) at a cryogenic temperature. The array of nanowires ~1 µm in diameter and with the aspect ratio of ~10 was successfully prepared from commercial <i>n</i>-type silicon wafer. The half-cell LIB with free-standing <i>n</i>-SiNW electrode exhibited an initial Coulombic efficiency of 91.1%, which was higher than the battery with a blank <i>n</i>-silicon wafer electrode (i.e., 67.5%). Upon 100 cycles of stability testing at 0.06 mA cm<sup>−2</sup>, the battery with the <i>n</i>-SiNW electrode retained 85.9% of its 0.50 mAh cm<sup>−2</sup> capacity after the pre-lithiation step, whereas its counterpart, the blank <i>n</i>-silicon wafer electrode, only maintained 61.4% of 0.21 mAh cm<sup>−2</sup> capacity. Furthermore, 76.7% capacity retention can be obtained at a current density of 0.2 mA cm<sup>−2</sup>, showing the potential of <i>n</i>-SiNW anodes for high current density applications. This work presents an alternative method for facile, high precision, and high throughput patterning on a wafer-scale to obtain a high aspect ratio <i>n</i>-SiNW, and its application in LIBs. |
first_indexed | 2024-03-10T05:11:50Z |
format | Article |
id | doaj.art-5158561ab94c406ca02ea8db514892bb |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-03-10T05:11:50Z |
publishDate | 2021-11-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-5158561ab94c406ca02ea8db514892bb2023-11-23T00:43:44ZengMDPI AGNanomaterials2079-49912021-11-011111313710.3390/nano11113137Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion BatteriesAndika Pandu Nugroho0Naufal Hanif Hawari1Bagas Prakoso2Andam Deatama Refino3Nursidik Yulianto4Ferry Iskandar5Evvy Kartini6Erwin Peiner7Hutomo Suryo Wasisto8Afriyanti Sumboja9Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, IndonesiaMaterial Science and Engineering Research Group, Faculty of Mechanical and Aerospace, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, IndonesiaMekanisasi Perikanan, Politeknik Kelautan dan Perikanan Sorong, Jl. Kapitan Pattimura, Sorong 98411, IndonesiaInstitute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyInstitute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyDepartment of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, IndonesiaNational Battery Research Institute, Gedung EduCenter Lt. 2 Unit 22260 BSD City, South Tangerang 15331, IndonesiaInstitute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyInstitute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyMaterial Science and Engineering Research Group, Faculty of Mechanical and Aerospace, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, IndonesiaDue to its high theoretical specific capacity, a silicon anode is one of the candidates for realizing high energy density lithium-ion batteries (LIBs). However, problems related to bulk silicon (e.g., low intrinsic conductivity and massive volume expansion) limit the performance of silicon anodes. In this work, to improve the performance of silicon anodes, a vertically aligned <i>n</i>-type silicon nanowire array (<i>n</i>-SiNW) was fabricated using a well-controlled, top-down nano-machining technique by combining photolithography and inductively coupled plasma reactive ion etching (ICP-RIE) at a cryogenic temperature. The array of nanowires ~1 µm in diameter and with the aspect ratio of ~10 was successfully prepared from commercial <i>n</i>-type silicon wafer. The half-cell LIB with free-standing <i>n</i>-SiNW electrode exhibited an initial Coulombic efficiency of 91.1%, which was higher than the battery with a blank <i>n</i>-silicon wafer electrode (i.e., 67.5%). Upon 100 cycles of stability testing at 0.06 mA cm<sup>−2</sup>, the battery with the <i>n</i>-SiNW electrode retained 85.9% of its 0.50 mAh cm<sup>−2</sup> capacity after the pre-lithiation step, whereas its counterpart, the blank <i>n</i>-silicon wafer electrode, only maintained 61.4% of 0.21 mAh cm<sup>−2</sup> capacity. Furthermore, 76.7% capacity retention can be obtained at a current density of 0.2 mA cm<sup>−2</sup>, showing the potential of <i>n</i>-SiNW anodes for high current density applications. This work presents an alternative method for facile, high precision, and high throughput patterning on a wafer-scale to obtain a high aspect ratio <i>n</i>-SiNW, and its application in LIBs.https://www.mdpi.com/2079-4991/11/11/3137silicon nanowirenanowire arraysilicon anode<i>n</i>-type silicon anodeLi-ion battery |
spellingShingle | Andika Pandu Nugroho Naufal Hanif Hawari Bagas Prakoso Andam Deatama Refino Nursidik Yulianto Ferry Iskandar Evvy Kartini Erwin Peiner Hutomo Suryo Wasisto Afriyanti Sumboja Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion Batteries Nanomaterials silicon nanowire nanowire array silicon anode <i>n</i>-type silicon anode Li-ion battery |
title | Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion Batteries |
title_full | Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion Batteries |
title_fullStr | Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion Batteries |
title_full_unstemmed | Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion Batteries |
title_short | Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion Batteries |
title_sort | vertically aligned i n i type silicon nanowire array as a free standing anode for lithium ion batteries |
topic | silicon nanowire nanowire array silicon anode <i>n</i>-type silicon anode Li-ion battery |
url | https://www.mdpi.com/2079-4991/11/11/3137 |
work_keys_str_mv | AT andikapandunugroho verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries AT naufalhanifhawari verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries AT bagasprakoso verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries AT andamdeatamarefino verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries AT nursidikyulianto verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries AT ferryiskandar verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries AT evvykartini verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries AT erwinpeiner verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries AT hutomosuryowasisto verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries AT afriyantisumboja verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries |