Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion Batteries

Due to its high theoretical specific capacity, a silicon anode is one of the candidates for realizing high energy density lithium-ion batteries (LIBs). However, problems related to bulk silicon (e.g., low intrinsic conductivity and massive volume expansion) limit the performance of silicon anodes. I...

Full description

Bibliographic Details
Main Authors: Andika Pandu Nugroho, Naufal Hanif Hawari, Bagas Prakoso, Andam Deatama Refino, Nursidik Yulianto, Ferry Iskandar, Evvy Kartini, Erwin Peiner, Hutomo Suryo Wasisto, Afriyanti Sumboja
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/11/11/3137
_version_ 1827675792279076864
author Andika Pandu Nugroho
Naufal Hanif Hawari
Bagas Prakoso
Andam Deatama Refino
Nursidik Yulianto
Ferry Iskandar
Evvy Kartini
Erwin Peiner
Hutomo Suryo Wasisto
Afriyanti Sumboja
author_facet Andika Pandu Nugroho
Naufal Hanif Hawari
Bagas Prakoso
Andam Deatama Refino
Nursidik Yulianto
Ferry Iskandar
Evvy Kartini
Erwin Peiner
Hutomo Suryo Wasisto
Afriyanti Sumboja
author_sort Andika Pandu Nugroho
collection DOAJ
description Due to its high theoretical specific capacity, a silicon anode is one of the candidates for realizing high energy density lithium-ion batteries (LIBs). However, problems related to bulk silicon (e.g., low intrinsic conductivity and massive volume expansion) limit the performance of silicon anodes. In this work, to improve the performance of silicon anodes, a vertically aligned <i>n</i>-type silicon nanowire array (<i>n</i>-SiNW) was fabricated using a well-controlled, top-down nano-machining technique by combining photolithography and inductively coupled plasma reactive ion etching (ICP-RIE) at a cryogenic temperature. The array of nanowires ~1 µm in diameter and with the aspect ratio of ~10 was successfully prepared from commercial <i>n</i>-type silicon wafer. The half-cell LIB with free-standing <i>n</i>-SiNW electrode exhibited an initial Coulombic efficiency of 91.1%, which was higher than the battery with a blank <i>n</i>-silicon wafer electrode (i.e., 67.5%). Upon 100 cycles of stability testing at 0.06 mA cm<sup>−2</sup>, the battery with the <i>n</i>-SiNW electrode retained 85.9% of its 0.50 mAh cm<sup>−2</sup> capacity after the pre-lithiation step, whereas its counterpart, the blank <i>n</i>-silicon wafer electrode, only maintained 61.4% of 0.21 mAh cm<sup>−2</sup> capacity. Furthermore, 76.7% capacity retention can be obtained at a current density of 0.2 mA cm<sup>−2</sup>, showing the potential of <i>n</i>-SiNW anodes for high current density applications. This work presents an alternative method for facile, high precision, and high throughput patterning on a wafer-scale to obtain a high aspect ratio <i>n</i>-SiNW, and its application in LIBs.
first_indexed 2024-03-10T05:11:50Z
format Article
id doaj.art-5158561ab94c406ca02ea8db514892bb
institution Directory Open Access Journal
issn 2079-4991
language English
last_indexed 2024-03-10T05:11:50Z
publishDate 2021-11-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj.art-5158561ab94c406ca02ea8db514892bb2023-11-23T00:43:44ZengMDPI AGNanomaterials2079-49912021-11-011111313710.3390/nano11113137Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion BatteriesAndika Pandu Nugroho0Naufal Hanif Hawari1Bagas Prakoso2Andam Deatama Refino3Nursidik Yulianto4Ferry Iskandar5Evvy Kartini6Erwin Peiner7Hutomo Suryo Wasisto8Afriyanti Sumboja9Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, IndonesiaMaterial Science and Engineering Research Group, Faculty of Mechanical and Aerospace, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, IndonesiaMekanisasi Perikanan, Politeknik Kelautan dan Perikanan Sorong, Jl. Kapitan Pattimura, Sorong 98411, IndonesiaInstitute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyInstitute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyDepartment of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, IndonesiaNational Battery Research Institute, Gedung EduCenter Lt. 2 Unit 22260 BSD City, South Tangerang 15331, IndonesiaInstitute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyInstitute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, GermanyMaterial Science and Engineering Research Group, Faculty of Mechanical and Aerospace, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, IndonesiaDue to its high theoretical specific capacity, a silicon anode is one of the candidates for realizing high energy density lithium-ion batteries (LIBs). However, problems related to bulk silicon (e.g., low intrinsic conductivity and massive volume expansion) limit the performance of silicon anodes. In this work, to improve the performance of silicon anodes, a vertically aligned <i>n</i>-type silicon nanowire array (<i>n</i>-SiNW) was fabricated using a well-controlled, top-down nano-machining technique by combining photolithography and inductively coupled plasma reactive ion etching (ICP-RIE) at a cryogenic temperature. The array of nanowires ~1 µm in diameter and with the aspect ratio of ~10 was successfully prepared from commercial <i>n</i>-type silicon wafer. The half-cell LIB with free-standing <i>n</i>-SiNW electrode exhibited an initial Coulombic efficiency of 91.1%, which was higher than the battery with a blank <i>n</i>-silicon wafer electrode (i.e., 67.5%). Upon 100 cycles of stability testing at 0.06 mA cm<sup>−2</sup>, the battery with the <i>n</i>-SiNW electrode retained 85.9% of its 0.50 mAh cm<sup>−2</sup> capacity after the pre-lithiation step, whereas its counterpart, the blank <i>n</i>-silicon wafer electrode, only maintained 61.4% of 0.21 mAh cm<sup>−2</sup> capacity. Furthermore, 76.7% capacity retention can be obtained at a current density of 0.2 mA cm<sup>−2</sup>, showing the potential of <i>n</i>-SiNW anodes for high current density applications. This work presents an alternative method for facile, high precision, and high throughput patterning on a wafer-scale to obtain a high aspect ratio <i>n</i>-SiNW, and its application in LIBs.https://www.mdpi.com/2079-4991/11/11/3137silicon nanowirenanowire arraysilicon anode<i>n</i>-type silicon anodeLi-ion battery
spellingShingle Andika Pandu Nugroho
Naufal Hanif Hawari
Bagas Prakoso
Andam Deatama Refino
Nursidik Yulianto
Ferry Iskandar
Evvy Kartini
Erwin Peiner
Hutomo Suryo Wasisto
Afriyanti Sumboja
Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion Batteries
Nanomaterials
silicon nanowire
nanowire array
silicon anode
<i>n</i>-type silicon anode
Li-ion battery
title Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion Batteries
title_full Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion Batteries
title_fullStr Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion Batteries
title_full_unstemmed Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion Batteries
title_short Vertically Aligned <i>n</i>-Type Silicon Nanowire Array as a Free-Standing Anode for Lithium-Ion Batteries
title_sort vertically aligned i n i type silicon nanowire array as a free standing anode for lithium ion batteries
topic silicon nanowire
nanowire array
silicon anode
<i>n</i>-type silicon anode
Li-ion battery
url https://www.mdpi.com/2079-4991/11/11/3137
work_keys_str_mv AT andikapandunugroho verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries
AT naufalhanifhawari verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries
AT bagasprakoso verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries
AT andamdeatamarefino verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries
AT nursidikyulianto verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries
AT ferryiskandar verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries
AT evvykartini verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries
AT erwinpeiner verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries
AT hutomosuryowasisto verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries
AT afriyantisumboja verticallyalignedinitypesiliconnanowirearrayasafreestandinganodeforlithiumionbatteries