On the Uniform Convergence of the Fourier Series by the System of Polynomials Generated by the System of Laguerre Polynomials

Let w(x) be the Laguerre weight function, 1 /le p < ∞, and Lpw be the space of functions f, p-th power of which is integrable with the weight function w(x) on the non-negative axis. For a given positive integer r, let denote by WrLpw the Sobolev space, which consists of r−1 times continuously dif...

Full description

Bibliographic Details
Main Author: Gadzhimirzaev, Ramis Makhmudovich
Format: Article
Language:English
Published: Saratov State University 2020-11-01
Series:Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
Subjects:
Online Access:https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2020/11/mmi_2020_4_416-423.pdf
Description
Summary:Let w(x) be the Laguerre weight function, 1 /le p < ∞, and Lpw be the space of functions f, p-th power of which is integrable with the weight function w(x) on the non-negative axis. For a given positive integer r, let denote by WrLpw the Sobolev space, which consists of r−1 times continuously differentiable functions f, for which the (r−1)-st derivative is absolutely continuous on an arbitrary segment [a, b] of non-negative axis, and the r-th derivative belongs to the space Lpw. In the case when p = 2 we introduce in the space WrL2w an inner product of Sobolev-type, which makes it a Hilbert space. Further, by lαr,n(x), where n = r, r + 1, ..., we denote the polynomials generated by the classical Laguerre polynomials. These polynomials together with functions lαr,n(x) = xn / n! , where n = 0, 1, r − 1, form a complete and orthonormal system in the space WrL2w. In this paper, the problem of uniform convergence on any segment [0,A] of the Fourier series by this system of polynomials to functions from the Sobolev space WrLpw is considered. Earlier, uniform convergence was established for the case p = 2. In this paper, it is proved that uniform convergence of the Fourier series takes place for p > 2 and does not occur for 1 /le p < 2. The proof of convergence is based on the fact that WrLpw ⊂ WrL2w for p > 2. The divergence of the Fourier series by the example of the function ecx using the asymptotic behavior of the Laguerre polynomials is established.
ISSN:1816-9791
2541-9005