A Second-Order Crank-Nicolson-Type Scheme for Nonlinear Space–Time Reaction–Diffusion Equations on Time-Graded Meshes

A weak singularity in the solution of time-fractional differential equations can degrade the accuracy of numerical methods when employing a uniform mesh, especially with schemes involving the Caputo derivative (order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"...

Full description

Bibliographic Details
Main Authors: Yusuf O. Afolabi, Toheeb A. Biala, Olaniyi S. Iyiola, Abdul Q. M. Khaliq, Bruce A. Wade
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/1/40
_version_ 1797442295192092672
author Yusuf O. Afolabi
Toheeb A. Biala
Olaniyi S. Iyiola
Abdul Q. M. Khaliq
Bruce A. Wade
author_facet Yusuf O. Afolabi
Toheeb A. Biala
Olaniyi S. Iyiola
Abdul Q. M. Khaliq
Bruce A. Wade
author_sort Yusuf O. Afolabi
collection DOAJ
description A weak singularity in the solution of time-fractional differential equations can degrade the accuracy of numerical methods when employing a uniform mesh, especially with schemes involving the Caputo derivative (order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>,</mo></mrow></semantics></math></inline-formula>), where time accuracy is of the order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>2</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mo>)</mo></mrow></semantics></math></inline-formula>. To deal with this problem, we present a second-order numerical scheme for nonlinear time–space fractional reaction–diffusion equations. For spatial resolution, we employ a matrix transfer technique. Using graded meshes in time, we improve the convergence rate of the algorithm. Furthermore, some sharp error estimates that give an optimal second-order rate of convergence are presented and proven. We discuss the stability properties of the numerical scheme and elaborate on several empirical examples that corroborate our theoretical observations.
first_indexed 2024-03-09T12:39:46Z
format Article
id doaj.art-516a39137c3042a98929ae8c92353545
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-09T12:39:46Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-516a39137c3042a98929ae8c923535452023-11-30T22:19:22ZengMDPI AGFractal and Fractional2504-31102022-12-01714010.3390/fractalfract7010040A Second-Order Crank-Nicolson-Type Scheme for Nonlinear Space–Time Reaction–Diffusion Equations on Time-Graded MeshesYusuf O. Afolabi0Toheeb A. Biala1Olaniyi S. Iyiola2Abdul Q. M. Khaliq3Bruce A. Wade4Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504, USADepartment of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USADepartment of Mathematics, Clarkson University, Potsdam, NY 13699, USADepartment of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USADepartment of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504, USAA weak singularity in the solution of time-fractional differential equations can degrade the accuracy of numerical methods when employing a uniform mesh, especially with schemes involving the Caputo derivative (order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>,</mo></mrow></semantics></math></inline-formula>), where time accuracy is of the order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>2</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mo>)</mo></mrow></semantics></math></inline-formula>. To deal with this problem, we present a second-order numerical scheme for nonlinear time–space fractional reaction–diffusion equations. For spatial resolution, we employ a matrix transfer technique. Using graded meshes in time, we improve the convergence rate of the algorithm. Furthermore, some sharp error estimates that give an optimal second-order rate of convergence are presented and proven. We discuss the stability properties of the numerical scheme and elaborate on several empirical examples that corroborate our theoretical observations.https://www.mdpi.com/2504-3110/7/1/40predictor-corrector schemeCaputo fractional derivativenonlinear time–space fractional equationmatrix transfergraded meshes
spellingShingle Yusuf O. Afolabi
Toheeb A. Biala
Olaniyi S. Iyiola
Abdul Q. M. Khaliq
Bruce A. Wade
A Second-Order Crank-Nicolson-Type Scheme for Nonlinear Space–Time Reaction–Diffusion Equations on Time-Graded Meshes
Fractal and Fractional
predictor-corrector scheme
Caputo fractional derivative
nonlinear time–space fractional equation
matrix transfer
graded meshes
title A Second-Order Crank-Nicolson-Type Scheme for Nonlinear Space–Time Reaction–Diffusion Equations on Time-Graded Meshes
title_full A Second-Order Crank-Nicolson-Type Scheme for Nonlinear Space–Time Reaction–Diffusion Equations on Time-Graded Meshes
title_fullStr A Second-Order Crank-Nicolson-Type Scheme for Nonlinear Space–Time Reaction–Diffusion Equations on Time-Graded Meshes
title_full_unstemmed A Second-Order Crank-Nicolson-Type Scheme for Nonlinear Space–Time Reaction–Diffusion Equations on Time-Graded Meshes
title_short A Second-Order Crank-Nicolson-Type Scheme for Nonlinear Space–Time Reaction–Diffusion Equations on Time-Graded Meshes
title_sort second order crank nicolson type scheme for nonlinear space time reaction diffusion equations on time graded meshes
topic predictor-corrector scheme
Caputo fractional derivative
nonlinear time–space fractional equation
matrix transfer
graded meshes
url https://www.mdpi.com/2504-3110/7/1/40
work_keys_str_mv AT yusufoafolabi asecondordercranknicolsontypeschemefornonlinearspacetimereactiondiffusionequationsontimegradedmeshes
AT toheebabiala asecondordercranknicolsontypeschemefornonlinearspacetimereactiondiffusionequationsontimegradedmeshes
AT olaniyisiyiola asecondordercranknicolsontypeschemefornonlinearspacetimereactiondiffusionequationsontimegradedmeshes
AT abdulqmkhaliq asecondordercranknicolsontypeschemefornonlinearspacetimereactiondiffusionequationsontimegradedmeshes
AT bruceawade asecondordercranknicolsontypeschemefornonlinearspacetimereactiondiffusionequationsontimegradedmeshes
AT yusufoafolabi secondordercranknicolsontypeschemefornonlinearspacetimereactiondiffusionequationsontimegradedmeshes
AT toheebabiala secondordercranknicolsontypeschemefornonlinearspacetimereactiondiffusionequationsontimegradedmeshes
AT olaniyisiyiola secondordercranknicolsontypeschemefornonlinearspacetimereactiondiffusionequationsontimegradedmeshes
AT abdulqmkhaliq secondordercranknicolsontypeschemefornonlinearspacetimereactiondiffusionequationsontimegradedmeshes
AT bruceawade secondordercranknicolsontypeschemefornonlinearspacetimereactiondiffusionequationsontimegradedmeshes